Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artif Organs ; 46(11): 2147-2158, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35377463

RESUMO

BACKGROUND: Most existing retinal prostheses contain a built-in visible-light camera module that captures images of the surrounding environment. Thus, in case of insufficient or lack of visible light, the camera fails to work, and the retinal prostheses enter a dormant or "OFF" state. A simple and effective solution is replacing the visible-light camera with a dual-mode camera. The present research aimed to achieve two main purposes: (1) to explore whether the dual-mode camera in prosthesis recipients works under no visible-light conditions and (2) to assess its performance. METHODS: To accomplish these aims, we enrolled subjects in a psychophysical experiment under simulated prosthetic vision conditions. We found that the subjects could complete some simple visual tasks, but the recognition performance under the infrared mode was significantly inferior to that under the visible-light mode. These results inspired us to develop and propose a feasible infrared image-enhancement processing algorithm. Another psychophysical experiment was performed to verify the feasibility of the algorithm. RESULTS: The obtained results showed that the average efficiency of the subjects completing visual tasks using our enhancement algorithm (0.014 ± 0.001) was significantly higher (p < 0.001) than that of subjects using direct pixelization (0.007 ± 0.001). CONCLUSIONS: We concluded that a dual-mode camera could be a feasible solution to improving the performance of retinal prostheses as the camera adapted better to the specific existing ambient light conditions. Dual-mode cameras combined with this infrared image-enhancement algorithm could provide a promising direction for the design of future retinal prostheses.


Assuntos
Próteses Visuais , Humanos , Visão Ocular , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Psicológico
2.
Brain Res ; 1785: 147875, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271821

RESUMO

Retinal stimulation has become a widely utilized approach to restore visual function for individuals with retinal degenerative diseases. Although the rectangular electrical pulse is the primary stimulus waveform used in retinal neuromodulation, it remains unclear whether alternate waveforms may be more effective. Here, we used the optical intrinsic signal imaging system to assess the responses of cats' visual cortex to sinusoidal electrical stimulation through contact lens electrode, analyzing the response to various stimulus parameters (frequency, intensity, pulse width). A comparison between sinusoidal and rectangular stimulus waveform was also investigated. The results indicated that the optimal stimulation frequency for sinusoidal electrical stimulation was approximately 20 Hz, supporting the hypothesis that low-frequency electrostimulation induces more responsiveness in retinal neurons than high-frequency electrostimulation in case of sinusoidal stimulation. We also demonstrated that for low-frequency retinal neuromodulation, sinusoidal pulses are more effective than rectangular ones. In addition, we found that compared to current intensity, the effect of the sinusoidal pulse width on cortical responses was more prominent. These results suggested that sinusoidal electrical stimulation may provide a promising strategy for improved retinal neuromodulation in clinical settings.


Assuntos
Degeneração Retiniana , Córtex Visual , Estimulação Elétrica/métodos , Humanos , Retina/fisiologia , Córtex Visual/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-33507871

RESUMO

Retinal electrical stimulation is a widely utilized method to restore visual function for patients with retinal degenerative diseases. Transcorneal electrical stimulation (TES) represents an effective way to improve the visual function due to its potential neuroprotective effect. However, TES with single electrode fails to spatially and selectively stimulate retinal neurons. Herein, a computational modeling method was proposed to explore the feasibility of spatially selective retinal stimulation via temporally interfering electric fields. An eyeball model with multiple electrodes was constructed to simulate the interferential electric fields with various electrode montages and current ratios. The results demonstrated that the temporal interference (TI) stimulation would gradually generate an increasingly localized high-intensity region on retina as the return electrodes moved towards the posterior of the eyeball and got closer. Additionally, the position of the convergent region could be modulated by regulating the current ratio of different electrode channels. The TI strategy with multisite and steerable stimulation can stimulate local retinal region with certain convergence and a relatively large stimulation range, which would be a feasible approach for the spatially selective retinal neuromodulation.


Assuntos
Retina , Visão Ocular , Estimulação Elétrica , Eletrodos , Humanos
4.
IEEE Trans Neural Syst Rehabil Eng ; 27(5): 905-915, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31021770

RESUMO

Transcorneal electrical stimulation (TES) has become an effective strategy to modulate retinal neural activities and partially restore visual function in ophthalmic diseases. However, the exact responses in different retinal layers still need to be clarified. This paper's goal was to evaluate the depth-resolved retinal physiological responses evoked by TES by using optical coherence tomography (OCT). A custom-built spectral-domain OCT system was used to record the intrinsic optical signals (IOSs) in different retinal layers. TES and flickers were used to stimulate the retina electrically and visually. Tetrodotoxin was used to inhibit the retinal neural activity for confirming the origin of TES-induced IOSs. We found both positive and negative IOSs could be evoked by TES in three segmented retinal layers, especially in the inner retina and subretinal space. The TES-induced IOSs correlated with the TES intensity. After tetrodotoxin injection, the IOSs evoked by TES were significantly declined, peculiarly in the inner retina. The IOSs elicited by flickers kept increasing during the stimulation, while those evoked by TES kept at a stable level. In conclusion, TES could elicit IOSs that originated from retinal neural activity in all segmented layers. The TES-induced IOSs were highly synchronized to the electrical field in the retina.


Assuntos
Percepção de Profundidade/fisiologia , Estimulação Elétrica , Retina/diagnóstico por imagem , Retina/fisiologia , Algoritmos , Anestésicos Locais/farmacologia , Animais , Gatos , Eletrorretinografia , Estimulação Luminosa , Retina/efeitos dos fármacos , Processamento de Sinais Assistido por Computador , Tetrodotoxina/farmacologia , Tomografia de Coerência Óptica
5.
Artigo em Inglês | MEDLINE | ID: mdl-29670661

RESUMO

Diabetic osteoporosis (DO) is a complication of diabetes. Zishen Jiangtang Pill (ZJP) is a Chinese herbal product which has been used in clinic to maintain blood glucose level and bone density for decades. However, the evidence about its mechanism on diabetes and osteoporosis is still unknown. The aim of this study is to investigate therapeutic effect of ZJP on DO in streptozotocin- (STZ-) induced rats. Rats were randomly assigned to 4 groups: one control group (CON), one model group (MOD), and two ZJP treatment groups (1.5 and 3.0 g/kg/d). All rats were treated for 8 weeks. Results showed that ZJP decreased the blood glucose level during OGTT and prevented the changes of FBG and Fins. Similarly, ZJP inhibited the changes of BCa, P, TRACP-5b, CTX-1, BALP, and BGP and the reduction of BMD. In parallel, 1H-NMR metabolomic studies showed that ZJP significantly altered the metabolic fingerprints of blood and urine level. These findings suggest that ZJP can effectively improve glucose metabolism, abnormal bone metabolism, and metabolic disorders in DO rats, which may be a useful alternative medicine for DO therapy.

6.
Brain Stimul ; 11(4): 667-675, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29525237

RESUMO

BACKGROUND: Electrical stimulation has been widely used in many ophthalmic diseases to modulate neuronal activities or restore partial visual function. Due to the different processing pathways and mechanisms, responses to visual and electrical stimulation in the primary visual cortex and higher visual areas might be different. This differences would shed some light on the properties of cortical responses evoked by electrical stimulation. OBJECTIVE: This study's goal was to directly compare the cortical responses evoked by visual and electrical stimulation and investigate the cortical processing of visual information and extrinsic electrical signal. METHODS: Optical imaging of intrinsic signals (OIS) was used to probe the cortical hemodynamic responses in 11 cats. Transcorneal electrical stimulation (TES) through an ERG-jet contact lens electrode was used to activate visual cortices. Full-field and peripheral drifting gratings were used as the visual stimuli. RESULTS: The response latency evoked by TES was shorter than that responding to visual stimulation (VS). Cortical responses evoked by VS were retinotopically organized, which was consistent with previous studies. On the other hand, the cortical region activated by TES was preferentially located in the secondary visual cortex (Area 18), while the primary visual cortex (Area 17) was activated by a higher current intensity. Compared with the full-field VS, the cortical response in Area 18 to TES with a current intensity above 1.2 mA was significantly stronger. CONCLUSION: According to our results, we provided some evidence that the cortical processing of TES was influenced by the distribution of the electrical field in the retina and the activating threshold of different retinal ganglion cells.


Assuntos
Potenciais Evocados Visuais , Estimulação Luminosa , Retina/fisiologia , Animais , Gatos , Estimulação Elétrica , Tempo de Reação , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA