Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 80, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565536

RESUMO

RNA-binding proteins (RBPs)-RNA networks have contributed to cancer development. Circular RNAs (circRNAs) are considered as protein recruiters; nevertheless, the patterns of circRNA-protein interactions in colorectal cancer (CRC) are still lacking. Processing bodies (PBs) formed through liquid-liquid phase separation (LLPS) are membrane-less organelles (MLOs) consisting of RBPs and RNA. Previous evidence suggests a connection between PBs dynamics and cancer progression. Despite the increasingly acknowledged crucial role of RBPs and RNA in the accumulation and maintenance of MLOs, there remains a lack of specific research on the interactions between PBs-related RBPs and circRNAs in CRC. Herein, we identify that MEX-3 RNA binding family member A (MEX3A), frequently upregulated in CRC tissues, predicts poorer patient survival. Elevated MEX3A accelerates malignance and inhibits autophagy of CRC cells. Importantly, MEX3A undergoes intrinsically disordered regions (IDRs)-dependent LLPS in the cytoplasm. Specifically, circMPP6 acts as a scaffold to facilitate the interaction between MEX3A and PBs proteins. The MEX3A/circMPP6 complex modulates PBs dynamic and promotes UPF-mediated phosphodiesterase 5A (PDE5A) mRNA degradation, consequently leading to the aggressive properties of CRC cells. Clinically, CRC patients exhibiting high MEX3A expression and low PDE5A expression have the poorest overall survival. Our findings reveal a collaboration between MEX3A and circMPP6 in the regulation of mRNA decay through triggering the PBs aggregation, which provides prognostic markers and/or therapeutic targets for CRC.


Assuntos
Neoplasias Colorretais , RNA Circular , Humanos , Autofagia/genética , Neoplasias Colorretais/metabolismo , Família , Fosfoproteínas/metabolismo , Proteínas/metabolismo , RNA/genética , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Opt Express ; 32(5): 8321-8334, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439490

RESUMO

Phase-sensitive optical time domain reflectometer (Φ-OTDR) is an emergent distributed optical sensing system with the advantages of high localization accuracy and high sensitivity. It has been widely used for intrusion identification, pipeline monitoring, under-ground tunnel monitoring, etc. Deep learning-based classification methods work well for Φ-OTDR event recognition tasks with sufficient samples. However, the lack of training data samples is sometimes a serious problem for these data-driven algorithms. This paper proposes a novel feature synthesizing approach to solve this problem. A mixed class approach and a reinforcement learning-based guided training method are proposed to realize high-quality feature synthesis. Experiment results in the task of eight event classifications, including one unknown class, show that the proposed method can achieve an average classification accuracy of 42% for the unknown class and obtain its event type, meanwhile achieving a 74% average overall classification accuracy. This is 29% and 7% higher, respectively, than those of the ordinary instance synthesizing method. Moreover, this is the first time that the Φ-OTDR system can recognize a specific event and tell its event type without collecting its data sample in advance.

3.
Drug Resist Updat ; 73: 101052, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262246

RESUMO

AIMS: This investigation aims to elucidate the mechanism underlying sorafenib-induced ferroptosis in hepatocellular carcinoma (HCC). METHODS: The role of dual specificity phosphatase 4 (DUSP4) in sorafenib-treated HCC was investigated using comprehensive assessments both in vitro and in vivo, including Western blotting, qRT-PCR, cell viability assay, lipid reactive oxygen species (ROS) assay, immunohistochemistry, and xenograft tumor mouse model. Additionally, label-free quantitative proteomics was employed to identify potential proteins associated with DUSP4. RESULTS: Our study revealed that suppression of DUSP4 expression heightens the susceptibility of HCC cells to ferroptosis inducers, specifically sorafenib and erastin, in both in vitro and in vivo settings. Furthermore, we identified DUSP4-mediated regulation of key ferroptosis-related markers, such as ferritin light chain (FTL) and ferritin heavy chain 1 (FTH1). Notably, label-free quantitative proteomics unveiled the phosphorylation of threonine residue T148 on YTH Domain Containing 1 (YTHDC1) by DUSP4. Further investigations unraveled that YTHDC1, functioning as an mRNA nuclear export regulator, is a direct target of DUSP4, orchestrating the subcellular localization of FTL and FTH1 mRNAs. Significantly, our study highlights a strong correlation between elevated DUSP4 expression and sorafenib resistance in HCC. CONCLUSIONS: Our findings introduce DUSP4 as a negative regulator of sorafenib-induced ferroptosis. This discovery opens new avenues for the development of ferroptosis-based therapeutic strategies tailored for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Monoéster Fosfórico Hidrolases/uso terapêutico , Ferroptose/genética , Linhagem Celular Tumoral
4.
Cell Rep ; 43(1): 113654, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175757

RESUMO

Deficiency of DNA repair pathways drives the development of colorectal cancer. However, the role of the base excision repair (BER) pathway in colorectal cancer initiation remains unclear. This study shows that Nei-like DNA glycosylase 1 (NEIL1) is highly expressed in colorectal cancer (CRC) tissues and associated with poorer clinical outcomes. Knocking out neil1 in mice markedly suppresses tumorigenesis and enhances infiltration of CD8+ T cells in intestinal tumors. Furthermore, NEIL1 directly forms a complex with SATB2/c-Myc to enhance the transcription of COL17A1 and subsequently promotes the production of immunosuppressive cytokines in CRC cells. A NEIL1 peptide suppresses intestinal tumorigenesis in ApcMin/+ mice, and targeting NEIL1 demonstrates a synergistic suppressive effect on tumor growth when combined with a nuclear factor κB (NF-κB) inhibitor. These results suggest that combined targeting of NEIL1 and NF-κB may represent a promising strategy for CRC therapy.


Assuntos
Neoplasias Colorretais , DNA Glicosilases , Animais , Camundongos , Carcinogênese , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/genética , DNA Glicosilases/metabolismo , Reparo do DNA , NF-kappa B/metabolismo
5.
Adv Sci (Weinh) ; 10(36): e2302494, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985839

RESUMO

Stromal antigen 2 (STAG2), a subunit of the cohesin complex, is recurrently mutated in various tumors. However, the role of STAG2 in DNA repair and its therapeutic implications are largely unknown. Here it is reported that knockout of STAG2 results in increased double-stranded breaks (DSBs) and chromosomal aberrations by reducing homologous recombination (HR) repair, and confers hypersensitivity to inhibitors of ataxia telangiectasia mutated (ATMi), Poly ADP Ribose Polymerase (PARPi), or the combination of both. Of note, the impaired HR by STAG2-deficiency is mainly attributed to the restored expression of KMT5A, which in turn methylates H4K20 (H4K20me0) to H4K20me1 and thereby decreases the recruitment of BRCA1-BARD1 to chromatin. Importantly, STAG2 expression correlates with poor prognosis of cancer patients. STAG2 is identified as an important regulator of HR and a potential therapeutic strategy for STAG2-mutant tumors is elucidated.


Assuntos
Neoplasias , Reparo de DNA por Recombinação , Humanos , Reparo de DNA por Recombinação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo do DNA/genética , Neoplasias/tratamento farmacológico , Coesinas , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
7.
Cancer Sci ; 114(8): 3176-3189, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37248790

RESUMO

Epigenetic alterations marked by DNA methylation are frequent events during the early development of nasopharyngeal carcinoma (NPC). We identified that TRIM29 is hypomethylated and overexpressed in NPC cell lines and tissues. TRIM29 silencing not only limited the growth of NPC cells in vitro and in vivo, but also induced cellular senescence, along with reactive oxygen species (ROS) accumulation. Mechanistically, we found that TRIM29 interacted with voltage-dependent anion-selective channel 1 (VDAC1) to activate mitophagy clearing up damaged mitochondria, which are the major source of ROS. In patients with NPC, high levels of TRIM29 expression are associated with an advanced clinical stage. Moreover, we detected hypomethylation of TRIM29 in patient nasopharyngeal swab DNA. Our findings indicate that TRIM29 depends on VDAC1 to induce mitophagy and prevents cellular senescence by decreasing ROS. Detection of aberrantly methylated TRIM29 in the nasopharyngeal swab DNA could be a promising strategy for the early detection of NPC.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Epigênese Genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética
8.
Small ; 19(35): e2301144, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186449

RESUMO

Because of its light weight and high strength, bamboo is used in many applications around the world. Natural bamboo is built from fiber-reinforced material and exhibits a porous graded architecture that provides its remarkable mechanical performance. This porosity gradient is generated through the unique distribution of densified vascular bundles. Scientists and engineers have been trying to mimic this architecture for a very long time with much of the work focusing on the effect of fiber reinforcement. However, there still lacks quantitative studies on the role of pore gradient design on mechanical properties, in part because the fabrication of bamboo-inspired graded materials is challenging. Here, the steep and continuous porosity gradient through an ingenious cellular design in Moso bamboo is revealed. The effect of gradient design on the mechanical performance is systematically studied by using 3D-printed models. The results show that not only the magnitude of gradient but also its continuity have a significant effect. By introducing a continuous and large gradient, the maximum flexural load and energy absorption capability can be increased by 40% and 110% when comparing to the structure without gradient. These bamboo-inspired cellular architectures can offer efficient solutions for the design of damage tolerant engineering structures.

9.
ACS Nano ; 17(11): 10291-10299, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37186522

RESUMO

The prevailing transmission of image information over the Internet of Things demands trustworthy cryptography for high security and privacy. State-of-the-art security modules are usually physically separated from the sensory terminals that capture images, which unavoidably exposes image information to various attacks during the transmission process. Here we develop in-sensor cryptography that enables capturing images and producing security keys in the same hardware devices. The generated key inherently binds to the captured images, which gives rise to highly trustworthy cryptography. Using the intrinsic electronic and optoelectronic characteristics of the 256 molybdenum disulfide phototransistor array, we can harvest electronic and optoelectronic binary keys with a physically unclonable function and further upgrade them into multiple-state ternary and double-binary keys, exhibiting high uniformity, uniqueness, randomness, and coding capacity. This in-sensor cryptography enables highly trustworthy image encryption to avoid passive attacks and image authentication to prevent unauthorized editions.

10.
Nat Nanotechnol ; 18(8): 882-888, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37081081

RESUMO

Motion processing has proven to be a computational challenge and demands considerable computational resources. Contrast this with the fact that flying insects can agilely perceive real-world motion with their tiny vision system. Here we show that phototransistor arrays can directly perceive different types of motion at sensory terminals, emulating the non-spiking graded neurons of insect vision systems. The charge dynamics of the shallow trapping centres in MoS2 phototransistors mimic the characteristics of graded neurons, showing an information transmission rate of 1,200 bit s-1 and effectively encoding temporal light information. We used a 20 × 20 photosensor array to detect trajectories in the visual field, allowing the efficient perception of the direction and vision saliency of moving objects and achieving 99.2% recognition accuracy with a four-layer neural network. By modulating the charge dynamics of the shallow trapping centres of MoS2, the sensor array can recognize motion with a temporal resolution ranging from 101 to 106 ms.


Assuntos
Percepção de Movimento , Neurônios , Neurônios/química , Elétrons , Redes Neurais de Computação , Animais , Visão Ocular , Drosophila melanogaster
11.
Nat Nanotechnol ; 18(5): 493-500, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941361

RESUMO

The growing computational demand in artificial intelligence calls for hardware solutions that are capable of in situ machine learning, where both training and inference are performed by edge computation. This not only requires extremely energy-efficient architecture (such as in-memory computing) but also memory hardware with tunable properties to simultaneously meet the demand for training and inference. Here we report a duplex device structure based on a ferroelectric field-effect transistor and an atomically thin MoS2 channel, and realize a universal in-memory computing architecture for in situ learning. By exploiting the tunability of the ferroelectric energy landscape, the duplex building block demonstrates an overall excellent performance in endurance (>1013), retention (>10 years), speed (4.8 ns) and energy consumption (22.7 fJ bit-1 µm-2). We implemented a hardware neural network using arrays of two-transistors-one-duplex ferroelectric field-effect transistor cells and achieved 99.86% accuracy in a nonlinear localization task with in situ trained weights. Simulations show that the proposed device architecture could achieve the same level of performance as a graphics processing unit under notably improved energy efficiency. Our device core can be combined with silicon circuitry through three-dimensional heterogeneous integration to give a hardware solution towards general edge intelligence.

12.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36850691

RESUMO

At present, some studies have combined federated learning with blockchain, so that participants can conduct federated learning tasks under decentralized conditions, sharing and aggregating model parameters. However, these schemes do not take into account the trusted supervision of federated learning and the case of malicious node attacks. This paper introduces the concept of a trusted computing sandbox to solve this problem. A federated learning multi-task scheduling mechanism based on a trusted computing sandbox is designed and a decentralized trusted computing sandbox composed of computing resources provided by each participant is constructed as a state channel. The training process of the model is carried out in the channel and the malicious behavior is supervised by the smart contract, ensuring the data privacy of the participant node and the reliability of the calculation during the training process. In addition, considering the resource heterogeneity of participant nodes, the deep reinforcement learning method was used in this paper to solve the resource scheduling optimization problem in the process of constructing the state channel. The proposed algorithm aims to minimize the completion time of the system and improve the efficiency of the system while meeting the requirements of tasks on service quality as much as possible. Experimental results show that the proposed algorithm has better performance than the traditional heuristic algorithm and meta-heuristic algorithm.

13.
Nat Commun ; 13(1): 7758, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522374

RESUMO

Valley pseudospin is an electronic degree of freedom that promises highly efficient information processing applications. However, valley-polarized excitons usually have short pico-second lifetimes, which limits the room-temperature applicability of valleytronic devices. Here, we demonstrate room-temperature valley transistors that operate by generating free carrier valley polarization with a long lifetime. This is achieved by electrostatic manipulation of the non-trivial band topology of the Weyl semiconductor tellurium (Te). We observe valley-polarized diffusion lengths of more than 7 µm and fabricate valley transistors with an ON/OFF ratio of 105 at room temperature. Moreover, we demonstrate an ion insertion/extraction device structure that enables 32 non-volatile memory states with high linearity and symmetry in the Te valley transistor. With ultralow power consumption (~fW valley contribution), we enable the inferring process of artificial neural networks, exhibiting potential for applications in low-power neuromorphic computing.


Assuntos
Cognição , Meio Ambiente , Temperatura , Difusão , Eletrônica , Telúrio
14.
Front Cell Dev Biol ; 10: 973548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420139

RESUMO

Background: To evaluate prognostic value of WTAP levels in tumor and paired adjacent non-neoplastic liver tissues (PANLT) for cases of hepatitis B virus (HBV)-positive Asian small hepatocellular carcinoma (sHCC) patients who received curative partial hepatectomy. Method: The investigation with two external cohorts were included. Associations between hazard risk of recurrence and continuous WTAP levels were investigated with restricted cubic spline models. Cox and inverse probability weighting models were established for survival analysis. Based on interaction effects, further stratification analysis was performed. Landmark analysis was employed to analyze cases of late recurrence. Finally, sensitivity analysis was performed to assess unmeasured confounders. Findings: In an investigation cohort of 307 patients, restricted cubic spline models indicated that hazard risk of recurrence increases with elevated WTAP levels for sHCC and PANLT. However, using Cox and inverse probability weighting models, no significant differences were observed in recurrence-free survival (RFS) between groups with different WTAP levels in sHCC. Multivariate analysis showed that patients with high PANLT WTAP levels had significantly worse RFS (HR 1.567, 95% CI 1.065-2.307; p = 0.023). Based on the significant interaction effect between WTAP levels in sHCC and PANLT, stratification analysis revealed that recurrence risk is more pronounced in patients with high WTAP levels in both PANLT and sHCC. Landmark analysis showed that late recurrence was more likely to occur in patients with high PANLT WTAP levels (HR 2.058, 95% CI 1.113-3.805; p = 0.021). Moreover, the detrimental effects of elevated PANLT WTAP levels on RFS were validated with two external cohorts. Sensitivity analysis confirmed the robustness of results. Conclusion: Increased PANLT WTAP expression levels independently predict high recurrence risk in HBV-positive Asian sHCC patients. Both tumor tissues and PANLT need to be considered together in future clinical practice to obtain a more comprehensive and accurate evaluation for recurrence risk.

15.
Opt Express ; 30(23): 42086-42096, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366669

RESUMO

Different signal representations show different unique features for classification. In this paper, a feature fusion method with attention mechanism based on multiple signal representations is proposed for Φ-OTDR event classification with buried optical fiber. Each signal representation is fused after feature extraction to get richer and better features. With the help of a layer pruning method based on attention mechanism, the network size can be kept and avoid computation increase. Experiment results show that this method with 3 signal representations can improve the recognition accuracy to 97.93%, with 3.52% improvement compared to single representation approach. It also shows higher recognition accuracy than the tradition multiple signal representations fusion methods at the input stage. Furthermore, when it is used to fuse four representations, the recognition accuracy can be further improved to 99.11%.

16.
Front Med (Lausanne) ; 9: 981001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203764

RESUMO

Immunocheckpoint inhibitors have shown significant efficacy in the treatment of hepatocellular carcinoma (HCC), but there are individual differences. The aim of this study was to explore body mass index (BMI) as a predictor of anti-PD-1 efficacy in patients with HCC. We retrospectively analyzed 101 HCC patients who treated with anti-PD-1 at Sun Yat-sen University Cancer Center from July 2018 to November 2019 and divided them into overweight (BMI > 24.9) and non-overweight (BMI ≤ 24.9) groups based on baseline BMI levels. BMI > 24.9 accounted for 22 cases (21.8%) and BMI ≤ 24.9 accounted for 79 cases (78.2%) in the study cohort. Overweight patients had higher disease control rates than non-overweight patients (P = 0.019, respectively). The mean progression-free survival (PFS) in overweight patients (10.23 months) was significantly longer than that of non-overweight patients (6.85 months; P = 0.027). Among patients with immune-related adverse events (irAEs), the mean PFS was also significantly longer in overweight patients (7.72 months) than in non-overweight patients (5.31 months, P = 0.034). Multivariate analysis showed that BMI was an independent prognostic factor for PFS in HCC patients treated with anti-PD-1 (hazard ratio: 0.47, P = 0.044). Thus, higher BMI predicts a better prognosis among HCC patients treated with anti-PD-1. In clinical practice, patients' BMI can provide a useful tool for predicting the efficacy of anti-PD-1 therapy.

17.
Breast Cancer Res ; 24(1): 70, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284362

RESUMO

BACKGROUND: Metastatic breast carcinoma is commonly considered during differential diagnosis when metastatic disease is detected in females. In addition to the tumor morphology and documented clinical history, sensitive and specific immunohistochemical (IHC) markers such as GCDFP-15, mammaglobin, and GATA3 are helpful for determining breast origin. However, these markers are reported to show lower sensitivity in certain subtypes, such as triple-negative breast cancer (TNBC). MATERIALS AND METHODS: Using bioinformatics analyses, we identified a potential diagnostic panel to determine breast origin: matrix Gla protein (MGP), transcriptional repressor GATA binding 1 (TRPS1), and GATA-binding protein 3 (GATA3). We compared MGP, TRPS1, and GATA3 expression in different subtypes of breast carcinoma of (n = 1201) using IHC. As a newly identified marker, MGP expression was also evaluated in solid tumors (n = 2384) and normal tissues (n = 1351) from different organs. RESULTS: MGP and TRPS1 had comparable positive expression in HER2-positive (91.2% vs. 92.0%, p = 0.79) and TNBC subtypes (87.3% vs. 91.2%, p = 0.18). GATA3 expression was lower than MGP (p < 0.001) or TRPS1 (p < 0.001), especially in HER2-positive (77.0%, p < 0.001) and TNBC (43.3%, p < 0.001) subtypes. TRPS1 had the highest positivity rate (97.9%) in metaplastic TNBCs, followed by MGP (88.6%), while only 47.1% of metaplastic TNBCs were positive for GATA3. When using MGP, GATA3, and TRPS1 as a novel IHC panel, 93.0% of breast carcinomas were positive for at least two markers, and only 9 cases were negative for all three markers. MGP was detected in 36 cases (3.0%) that were negative for both GATA3 and TRPS1. MGP showed mild-to-moderate positive expression in normal hepatocytes, renal tubules, as well as 31.1% (99/318) of hepatocellular carcinomas. Rare cases (0.6-5%) had focal MGP expression in renal, ovarian, lung, urothelial, and cholangiocarcinomas. CONCLUSIONS: Our findings suggest that MGP is a newly identified sensitive IHC marker to support breast origin. MGP, TRPS1, and GATA3 could be applied as a reliable diagnostic panel to determine breast origin in clinical practice.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Biomarcadores Tumorais/metabolismo , Fator de Transcrição GATA3/genética , Mamoglobina A/análise , Mamoglobina A/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína de Matriz Gla
18.
Oncogene ; 41(39): 4433-4445, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35989368

RESUMO

Abnormal regulation of centrosome components can induce chromosome instability and tumorigenesis. Centrosomal protein 63 (CEP63) is a vital member for assembling centrosome. Yet, the involvement of CEP63 in cancer pathogenesis remains unclear. Here we identify CEP63 as an important mediator for RNA-binding proteins (RBPs) to facilitate regulation on their RNA targets in colorectal cancer (CRC). We demonstrate that CEP63 protein is upregulated in a large cohort of colorectal cancer tissues and predicts poor prognosis, and USP36 is identified for stabilizing CEP63 by enhancing its K48-dependent deubiquitination. CEP63 overexpression promotes the proliferation and tumor growth of CRC cells in vitro and in vivo. Furthermore, we find that CEP63 can promote cancer stem-like cell properties by enhancing YAP1 expression through binding with and inhibiting the K63-ubiquitylation degradation of RBP FXR1 in CRC cells. Importantly, we further verify that the KH domain of FXR1 is necessary for the interaction between CEP63 and FXR1. Moreover, microtube motor proteins can form a complex with CEP63 and FXR1 to mediate the regulation of FXR1 on RNA targets. Additionally, we also confirm that CEP63 can bind and regulate multiple RBPs. In conclusion, our findings unveil an unrecognized CEP63/RBPs/RNA axis that CEP63 may perform as an adapter facilitating the formation of RBPs complex to regulate RNA progression and discover the role of CEP63 involved in signal transduction and RNA regulation, providing potential therapeutic target for CRC patients.


Assuntos
Neoplasias Colorretais , Proteínas de Ligação a RNA , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Centrossomo/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas de Sinalização YAP
19.
Sci Adv ; 8(23): eabn3837, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687677

RESUMO

Modern electronics demand transistors with extremely high performance and energy efficiency. Charge-based transistors with conventional semiconductors experience substantial heat dissipation because of carrier scattering. Here, we demonstrate low-loss topological phase change transistors (TPCTs) based on tellurium, a Weyl semiconductor. By modulating the energy separation between the Fermi level and the Weyl point of tellurium through electrostatic gate modulation, the device exhibits topological phase change between Weyl (Chern number ≠ 0) and conventional (Chern number = 0) semiconductors. In the Weyl ON state, the device has low-loss transport characteristics due to the global topology of gauge fields against external perturbations; the OFF state exhibits trivial charge transport in the conventional phase by moving the Fermi level into the bandgap. The TPCTs show a high ON/OFF ratio (108) at low operation voltage (≤2 volts) and high ON-state conductance (39 mS/µm). Our studies provide alternative strategies for realizing ultralow power electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA