Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neuron ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38653248

RESUMO

White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, a model of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.

2.
Brain ; 147(4): 1294-1311, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38289861

RESUMO

Ischaemic stroke causes neuron loss and long-term functional deficits. Unfortunately, effective approaches to preserving neurons and promoting functional recovery remain unavailable. Oligodendrocytes, the myelinating cells in the CNS, are susceptible to oxygen and nutrition deprivation and undergo degeneration after ischaemic stroke. Technically, new oligodendrocytes and myelin can be generated by the differentiation of oligodendrocyte precursor cells (OPCs). However, myelin dynamics and their functional significance after ischaemic stroke remain poorly understood. Here, we report numerous denuded axons accompanied by decreased neuron density in sections from ischaemic stroke lesions in human brain, suggesting that neuron loss correlates with myelin deficits in these lesions. To investigate the longitudinal changes in myelin dynamics after stroke, we labelled and traced pre-existing and newly-formed myelin, respectively, using cell-specific genetic approaches. Our results indicated massive oligodendrocyte death and myelin loss 2 weeks after stroke in the transient middle cerebral artery occlusion (tMCAO) mouse model. In contrast, myelin regeneration remained insufficient 4 and 8 weeks post-stroke. Notably, neuronal loss and functional impairments worsened in aged brains, and new myelin generation was diminished. To analyse the causal relationship between remyelination and neuron survival, we manipulated myelinogenesis by conditional deletion of Olig2 (a positive regulator) or muscarinic receptor 1 (M1R, a negative regulator) in OPCs. Deleting Olig2 inhibited remyelination, reducing neuron survival and functional recovery after tMCAO. Conversely, enhancing remyelination by M1R conditional knockout or treatment with the pro-myelination drug clemastine after tMCAO preserved white matter integrity and neuronal survival, accelerating functional recovery. Together, our findings demonstrate that enhancing myelinogenesis is a promising strategy to preserve neurons and promote functional recovery after ischaemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Humanos , Idoso , Bainha de Mielina/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Oligodendroglia/patologia , Neurônios , Diferenciação Celular/fisiologia
3.
J Neurosci ; 43(11): 1859-1870, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36725322

RESUMO

Age-related decline in visual functions is a prevalent health problem among elderly people, and no effective therapies are available up-to-date. Axon degeneration and myelin loss in optic nerves (ONs) are age-dependent and become evident in middle-aged (13-18 months) and old (20-22 months) mice of either sex compared with adult mice (3-8 months), accompanied by functional deficits. Oligodendrocyte (OL) turnover is actively going on in adult ONs. However, the longitudinal change and functional significance of OL turnover in aging ONs remain largely unknown. Here, using cell-lineage labeling and tracing, we reported that oligodendrogenesis displayed an age-dependent decrease in aging ONs. To understand whether active OL turnover is required for maintaining axons and visual function, we conditionally deleted the transcription factor Olig2 in the oligodendrocyte precursor cells of young mice. Genetically dampening OL turnover by Olig2 ablation resulted in accelerated axon loss and retinal degeneration, and subsequently impaired ON signal transmission, suggesting that OL turnover is an important mechanism to sustain axon survival and visual function. To test whether enhancing oligodendrogenesis can prevent age-related visual deficits, 12-month-old mice were treated with clemastine, a pro-myelination drug, or induced deletion of the muscarinic receptor 1 in oligodendrocyte precursor cells. The clemastine treatment or muscarinic receptor 1 deletion significantly increased new OL generation in the aged ONs and consequently preserved visual function and retinal integrity. Together, our data indicate that dynamic OL turnover in ONs is required for axon survival and visual function, and enhancing new OL generation represents a potential approach to reversing age-related declines of visual function.SIGNIFICANCE STATEMENT Oligodendrocyte (OL) turnover has been reported in adult optic nerves (ONs), but the longitudinal change and functional significance of OL turnover during aging remain largely unknown. Using cell-lineage tracing and oligodendroglia-specific manipulation, this study reported that OL generation was active in adult ONs and the efficiency decreased in an age-dependent manner. Genetically dampening OL generation by Olig2 ablation resulted in significant axon loss and retinal degeneration, along with delayed visual signal transmission. Conversely, pro-myelination approaches significantly increased new myelin generation in aging ONs, and consequently preserved retinal integrity and visual function. Our findings indicate that promoting OL generation might be a promising strategy to preserve visual function from age-related decline.


Assuntos
Clemastina , Degeneração Retiniana , Camundongos , Animais , Clemastina/farmacologia , Oligodendroglia/fisiologia , Bainha de Mielina/fisiologia , Nervo Óptico , Axônios , Diferenciação Celular/fisiologia
4.
Exp Neurol ; 362: 114344, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736651

RESUMO

Alzheimer's disease (AD) is characterized by aggregating amyloid beta-protein (Aß). Recent evidence has shown that insufficient myelinogenesis contributes to AD-related functional deficits. However, it remains unclear whether Aß, in either plaque or soluble form, could alter myelinogenesis in AD brains. By cell-lineage tracing and labeling, we found both myelinogenesis and Aß deposits displayed a region-specific pattern in the 13-month-old APP/PS1 transgenic mouse brains. Aß plaques cause focal demyelination, but only about 15% Aß plaques are closely associated with newly formed myelin in the APP/PS1 brains. Further, the Aß plaque total area and the amount of new myelin are not linearly correlated across different cortical regions, suggesting that Aß plaques induce demyelination but may not exclusively trigger remyelination. To understand the role of soluble Aß in regulating myelinogenesis, we chose to observe the visual system, wherein soluble Aß is detectable but without the presence of Aß plaques in the APP/PS1 retina, optic nerve, and optic tract. Interestingly, newly-formed myelin density was not significantly altered in the APP/PS1 optic nerves and optic tracts as compared to the wildtype controls, suggesting soluble Aß probably does not change myelinogenesis. Further, treatment of purified oligodendrocyte precursor cells (OPCs) with soluble Aß (oligomers) for 48 h did not change the cell densities of MBP positive cells and PDGFRα positive OPCs in vitro. Consistently, injection of soluble Aß into the lateral ventricles did not alter myelinogenesis in the corpus callosum of NG2-CreErt; Tau-mGFP mice significantly. Together, these findings indicate that the region-dependent myelinogenesis in AD brains is not directly linked to Aß, but rather probably a synergic result in adapting to AD pathology.


Assuntos
Doença de Alzheimer , Doenças Desmielinizantes , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1 , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Placa Amiloide/patologia
5.
Dev Neurobiol ; 82(2): 160-174, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35081276

RESUMO

Oligodendrocytes (OLs) are a major type of glial cells in the central nervous system that generate multiple myelin sheaths to wrap axons. Myelin ensures fast and efficient propagation of action potentials along axons and supports neurons with nourishment. The decay of OLs and myelin has been implicated in age-related neurodegenerative diseases and these changes are generally considered as an inevitable result of neuron loss and axon degeneration. Noticeably, OLs and myelin undergo dynamic changes in healthy adult brains, that is, newly formed OLs are continuously added throughout life from the differentiation of oligodendrocyte precursor cells (OPCs) and the pre-existing myelin sheaths may undergo degeneration or remodeling. Increasing evidence has shown that changes in OLs and myelin are present in the early stages of neurodegenerative diseases, and even prior to significant neuronal loss and functional deficits. More importantly, oligodendroglia-specific manipulation, by either deletion of the disease gene or enhancement of myelin renewal, can alleviate functional impairments in neurodegenerative animal models. These findings underscore the possibility that OLs and myelin are not passively but actively involved in neurodegenerative diseases and may play an important role in modulating neuronal function and survival. In this review, we summarize recent work characterizing by OLs and myelin changes in both healthy and neurodegenerative brains and discuss the potential of targeting oligodendroglial cells in treating neurodegenerative diseases.


Assuntos
Bainha de Mielina , Oligodendroglia , Animais , Axônios , Sistema Nervoso Central , Bainha de Mielina/fisiologia , Neuroglia , Oligodendroglia/fisiologia
6.
Neurosci Bull ; 37(10): 1397-1411, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34292513

RESUMO

Exposure to chronic hypoxia is considered to be a risk factor for deficits in brain function in adults, but the underlying mechanisms remain largely unknown. Since active myelinogenesis persists in the adult central nervous system, here we aimed to investigate the impact of chronic hypoxia on myelination and the related functional consequences in adult mice. Using a transgenic approach to label newly-generated myelin sheaths (NG2-CreERTM; Tau-mGFP), we found that myelinogenesis was highly active in most brain regions, such as the motor cortex and corpus callosum. After exposure to hypoxia (10% oxygen) 12 h per day for 4 weeks, myelinogenesis was largely inhibited in the 4-month old brain and the mice displayed motor coordination deficits revealed by the beam-walking test. To determine the relationship between the inhibited myelination and functional impairment, we induced oligodendroglia-specific deletion of the transcription factor Olig2 by tamoxifen (NG2-CreERTM; Tau-mGFP; Olig2 fl/fl) in adult mice to mimic the decreased myelinogenesis caused by hypoxia. The deletion of Olig2 inhibited myelinogenesis and consequently impaired motor coordination, suggesting that myelinogenesis is required for motor function in adult mice. To understand whether enhancing myelination could protect brain functions against hypoxia, we treated hypoxic mice with the myelination-enhancing drug-clemastine, which resulted in enhanced myelogenesis and improved motor coordination. Taken together, our data indicate that chronic hypoxia inhibits myelinogenesis and causes functional deficits in the brain and that enhancing myelinogenesis protects brain functions against hypoxia-related deficits.


Assuntos
Bainha de Mielina , Oligodendroglia , Animais , Clemastina , Hipóxia/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Neuron ; 109(14): 2292-2307.e5, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34102111

RESUMO

Severe cognitive decline is a hallmark of Alzheimer's disease (AD). In addition to gray matter loss, significant white matter pathology has been identified in AD patients. Here, we characterized the dynamics of myelin generation and loss in the APP/PS1 mouse model of AD. Unexpectedly, we observed a dramatic increase in the rate of new myelin formation in APP/PS1 mice, reminiscent of the robust oligodendroglial response to demyelination. Despite this increase, overall levels of myelination are decreased in the cortex and hippocampus of APP/PS1 mice and postmortem AD tissue. Genetically or pharmacologically enhancing myelin renewal, by oligodendroglial deletion of the muscarinic M1 receptor or systemic administration of the pro-myelinating drug clemastine, improved the performance of APP/PS1 mice in memory-related tasks and increased hippocampal sharp wave ripples. Taken together, these results demonstrate the potential of enhancing myelination as a therapeutic strategy to alleviate AD-related cognitive impairment.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Aprendizagem em Labirinto/fisiologia , Bainha de Mielina/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
8.
Neurosci Bull ; 37(8): 1135-1146, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34106403

RESUMO

Increasing evidence has shown that astrocytes are implicated in regulating oligodendrocyte myelination, but the underlying mechanisms remain largely unknown. To understand whether microRNAs in astrocytes function in regulating oligodendroglial differentiation and myelination in the developing and adult CNS, we generated inducible astrocyte-specific Dicer conditional knockout mice (hGFAP-CreERT; Dicer fl/fl). By using a reporter mouse line (mT/mG), we confirmed that hGFAP-CreERT drives an efficient and astrocyte-specific recombination in the developing CNS, upon tamoxifen treatment from postnatal day 3 (P3) to P7. The Dicer deletion in astrocytes resulted in inhibited oligodendroglial differentiation and myelination in the developing CNS of Dicer cKO mice at P10 and P14, and did not alter the densities of neurons or axons, indicating that Dicer in astrocytes is required for oligodendrocyte myelination. Consequently, the Dicer deletion in astrocytes at P3 resulted in impaired spatial memory and motor coordination at the age of 9 weeks. To understand whether Dicer in astrocytes is also required for remyelination, we induced Dicer deletion in 3-month-old mice and then injected lysolecithin into the corpus callosum to induce demyelination. The Dicer deletion in astrocytes blocked remyelination in the corpus callosum 14 days after induced demyelination. Together, our results indicate that Dicer in astrocytes is required for oligodendroglia myelination in both the developing and adult CNS.


Assuntos
Diferenciação Celular , RNA Helicases DEAD-box/genética , Bainha de Mielina , Oligodendroglia/citologia , Remielinização , Ribonuclease III/genética , Animais , Astrócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese
9.
Nat Neurosci ; 23(4): 481-486, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32042174

RESUMO

Cognitive decline remains an unaddressed problem for the elderly. We show that myelination is highly active in young mice and greatly inhibited in aged mice, coinciding with spatial memory deficits. Inhibiting myelination by deletion of Olig2 in oligodendrocyte precursor cells impairs spatial memory in young mice, while enhancing myelination by deleting the muscarinic acetylcholine receptor 1 in oligodendrocyte precursor cells, or promoting oligodendroglial differentiation and myelination via clemastine treatment, rescues spatial memory decline during aging.


Assuntos
Envelhecimento/patologia , Doenças Desmielinizantes/patologia , Transtornos da Memória/patologia , Bainha de Mielina/patologia , Envelhecimento/genética , Animais , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia
10.
CNS Neurosci Ther ; 24(12): 1207-1218, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29869390

RESUMO

BACKGROUND: Activated microglia-mediated inflammation plays a key role in the pathogenesis of Alzheimer's disease (AD). In addition, chronic activation of NLRP3 inflammasomes triggered by amyloid ß peptide (Aß) in microglia contributes to persistent neuroinflammation. Here, the primary goal was to assess whether Dihydromyricetin (DHM), a plant flavonoid compound, is effective therapies for AD; it is crucial to know whether DHM will affect microglial activation and neuroinflammation in APP/PS1 transgenic mice. METHODS: After DHM was intraperitoneally injected in APP/PS1 double-transgenic mice, we assessed the effect of DHM on microglial activation, the expression of NLRP3 inflammasome components, and the production of inflammatory cytokine IL-1ß by immunofluorescence and Western blot. To determine whether DHM play roles in the Aß production and deposition, amyloid ß protein precursor (APP) and ß-site APP cleaving enzyme1 (BACE1), as well as neprilysin (NEP), were detected by Western blot. Finally, behavior was tested by Morris Water Maze to illustrate whether DHM treatment has a significantly positive effect on ameliorating the memory and cognition deficits in AD. RESULTS: Dihydromyricetin treatment significantly ameliorated memory and cognition deficits and decreased the number of activated microglia in the hippocampus and cortex of APP/PS1 mice. In addition, APP/PS1 mice show reduced activation of NLRP3 inflammasomes and reduced expression of NLRP3 inflammasome components. Furthermore, DHM could promote clearance of Aß, a trigger for NLRP3 inflammasome activation, by increasing levels of NEP and shift microglial conversion to the M2-specific agrinase-1-positive cell phenotype, which enhances microglial clearance of Aß and its aggregates but not production of Aß. CONCLUSION: Taken together, our findings suggest that DHM prevents progression of AD-like pathology through inhibition of NLRP3 inflammasome-based microglia-mediated neuroinflammation and may be a promising therapeutic drug for treating AD.


Assuntos
Doença de Alzheimer , Anti-Inflamatórios/uso terapêutico , Encefalite/tratamento farmacológico , Flavonóis/uso terapêutico , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Transformada , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/prevenção & controle , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Encefalite/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Presenilina-1/genética , Presenilina-1/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(9): 1217-1221, 2017 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-28951365

RESUMO

OBJECTIVE: To explore the expression of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) in early stage of diabetic retinopathy (DR) in Macaca mulatta. METHODS: Three diabetic Macaca mulattas induced by high-fat diet were identified for early stage of diabetic retinopathy according to the fasting plasma glucose, hemoglobin Alc (HbA1c), fundus photograph and duration of diabetes, with another 3 age-matched healthy Macaca mulattas as control. The expression of VEGF and PEDF in the retinas of Macaca mulatta were detected by quantitative real-time PCR and immunohistochemistry. RESULT: In early stage of diabetic retinopathy, VEGF mRNA and protein of the diabetic group were both significantly increased compared with the control group (P<0.05). PEDF expression at both mRNA and protein levels was significantly decreased in diabetic Macaca mulattas compared with the control group (P<0.01 and 0.05 respectively). CONCLUSION: Retinal VEGF expression is increased and PEDF expression is decreased in early stage of diabetic retinopathy, suggesting their involvement in the occurrence of diabetic retinopathy and their value in assisting in the early diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA