Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neural Netw ; 167: 460-472, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683460

RESUMO

The efficiency of communication across workers is a significant factor that affects the performance of federated learning. Though periodic communication strategy is applied to reduce communication rounds in training, the communication cost is still high when the training data distributions are not independently and identically distributed (non-IID) which is common in federated learning. Recently, some works introduce variance reduction to eliminate the effect caused by non-IID data among workers. Nevertheless the provable optimal communication complexity O(log(ST)) and convergence rate O(1/(ST)) cannot be achieved simultaneously, where S denotes the number of sampled workers in each round and T is the number of iterations. To deal with this dilemma, we propose an optimization algorithm SQUARFA that adopts stagewise training framework coupling with variance reduction and uses a quick-start phase in each loop. Theoretical results show that SQUARFA achieves both optimal convergence rate and communication complexity for both strongly convex objectives and non-convex objectives under PL condition, thus fills the gap mentioned above. Then, a variant of SQUARFA yields the optimal theoretical results for general non-convex objectives. We further extend the technique in SQUARFA to the large batch setting and achieve optimal communication complexity. Experimental results demonstrate the superiority of the proposed algorithms.


Assuntos
Algoritmos , Aprendizagem , Humanos , Comunicação
2.
IEEE Trans Image Process ; 30: 8454-8467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34464261

RESUMO

To train accurate deep object detectors under the extreme foreground-background imbalance, heuristic sampling methods are always necessary, which either re-sample a subset of all training samples (hard sampling methods, e.g. biased sampling, OHEM), or use all training samples but re-weight them discriminatively (soft sampling methods, e.g. Focal Loss, GHM). In this paper, we challenge the necessity of such hard/soft sampling methods for training accurate deep object detectors. While previous studies have shown that training detectors without heuristic sampling methods would significantly degrade accuracy, we reveal that this degradation comes from an unreasonable classification gradient magnitude caused by the imbalance, rather than a lack of re-sampling/re-weighting. Motivated by our discovery, we propose a simple yet effective Sampling-Free mechanism to achieve a reasonable classification gradient magnitude by initialization and loss scaling. Unlike heuristic sampling methods with multiple hyperparameters, our Sampling-Free mechanism is fully data diagnostic, without laborious hyperparameters searching. We verify the effectiveness of our method in training anchor-based and anchor-free object detectors, where our method always achieves higher detection accuracy than heuristic sampling methods on COCO and PASCAL VOC datasets. Our Sampling-Free mechanism provides a new perspective to address the foreground-background imbalance. Our code is released at https://github.com/ChenJoya/sampling-free.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA