Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(6): 390, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830885

RESUMO

Glioma is the most common and aggressive type of primary malignant brain tumor. The N6-methyladenosine (m6A) modification widely exists in eukaryotic cells and plays an important role in the occurrence and development of human tumors. However, the function and mechanism of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an RNA-binding protein and m6A reader in gliomas remains to be comprehensively and extensively explored. Herein, we found that HNRNPC mRNA and protein overexpression were associated with a poor prognosis for patients with gliomas, based on the data from TCGA, the CGGA, and the TMAs. Biologically, HNRNPC knockdown markedly repressed malignant phenotypes of glioma in vitro and in vivo, whereas ectopic HNRNPC expression had the opposite effect. Integrative RNA sequencing and MeRIP sequencing analyses identified interleukin-1 receptor-associated kinase 1 (IRAK1) as a downstream target of HNRNPC. The glioma public datasets and tissue microarrays (TMAs) data indicated that IRAK1 overexpression was associated with poor prognosis, and IRAK1 knockdown significantly repressed malignant biological behavior in vitro. Mechanistically, HNRNPC maintains the mRNA stability of IRAK1 in an m6A-dependent manner, resulting in activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which was necessary for the malignant behavior of glioma. Our findings demonstrate the HNRNPC-IRAK1-MAPK axis as a crucial carcinogenic factor for glioma and the novel underlying mechanism of IRAK1 upregulation, which provides a rationale for therapeutically targeting epitranscriptomic modulators in glioma.


Assuntos
Progressão da Doença , Glioma , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Quinases Associadas a Receptores de Interleucina-1 , Sistema de Sinalização das MAP Quinases , RNA Mensageiro , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Estabilidade de RNA/genética , Camundongos Nus , Animais , Regulação Neoplásica da Expressão Gênica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Feminino , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Prognóstico
2.
J Affect Disord ; 349: 297-309, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211750

RESUMO

BACKGROUND: Postoperative neurocognitive disorder (PND) is a common central nervous system complication after undergoing surgery and anesthesia especially in elderly patients, while the therapeutic options are very limited. This study was carried out to investigate the beneficial effects of transcranial near infrared light (NIRL) which was employed to the treatment of PND and propose the involved mechanisms. METHODS: The PND mice were established through left carotid artery exposure under isoflurane anesthesia and received transcranial NIRL treatment. Behavioral testing was performed to evaluate the cognitive function of PND mice after transcranial NIRL therapy. Changes in the transcriptomic profiles of prefrontal cortex (PFC) and hippocampus (HP) were identified by next generation sequencing (NGS), and the molecular mechanisms involved were examined by both in vivo mouse model and in vitro cell culture studies. RESULTS: We found that transcranial NIRL therapy effectively ameliorated learning and memory deficit induced by anesthesia and surgery in aged mice. Specifically, we identified down-regulation of interferon regulatory factor 7 (IRF7) in the brains of PND mice that was mechanistically associated with increased pro-inflammatory M1 phenotype of microglia and elevated neuroinflammatory. NIRL treatment produced protective effects through the upregulation of IRF7 expression and reversing microglial phenotypes from pro-inflammatory to neuroprotective, resulting in reduced brain damage and improved cognitive function in PND mice. CONCLUSION: Our results indicate that transcranial NIRL is an effective and safe therapy for PND via alleviating neuroinflammation, and IRF7 plays a key transcription factor in regulating the M1-to-M2 switch of microglia.


Assuntos
Fator Regulador 7 de Interferon , Fármacos Neuroprotetores , Idoso , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Camundongos Endogâmicos C57BL , Transtornos Neurocognitivos , Fototerapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA