Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Nanobiotechnology ; 22(1): 528, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218888

RESUMO

Molecular ultrasound imaging with actively targeted microbubbles (MB) proved promising in preclinical studies but its clinical translation is limited. To achieve this, it is essential that the actively targeted MB can be produced with high batch-to-batch reproducibility with a controllable and defined number of binding ligands on the surface. In this regard, poly (n-butyl cyanoacrylate) (PBCA)-based polymeric MB have been used for US molecular imaging, however, ligand coupling was mostly done via hydrolysis and carbodiimide chemistry, which is a multi-step procedure with poor reproducibility and low MB yield. Herein, we developed a single-step coupling procedure resulting in high MB yields with minimal batch-to-batch variation. Actively targeted PBCA-MB were generated using an aminolysis protocol, wherein amine-containing cRGD was added to the MB using lithium methoxide as a catalyst. We confirmed the successful conjugation of cRGD on the MB surface, while preserving their structure and acoustic signal. Compared to the conventional hydrolysis protocol, aminolysis resulted in higher MB yields and better reproducibility of coupling efficiency. Optical imaging revealed that under flow conditions, cRGD- and rhodamine-labelled MB, generated by aminolysis, specifically bind to tumor necrosis factor-alpha (TNF-α) activated endothelial cells in vitro. Furthermore, US molecular imaging demonstrated a markedly higher binding of the cRGD-MB than of control MB in TNF-α activated mouse aortas and 4T1 tumors in mice. Thus, using the aminolysis based conjugation approach, important refinements on the production of cRGD-MB could be achieved that will facilitate the production of clinical-scale formulations with excellent binding and ultrasound imaging performance.


Assuntos
Embucrilato , Microbolhas , Imagem Molecular , Ultrassonografia , Animais , Embucrilato/química , Camundongos , Imagem Molecular/métodos , Ultrassonografia/métodos , Humanos , Meios de Contraste/química , Feminino , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Fator de Necrose Tumoral alfa/metabolismo
2.
Light Sci Appl ; 13(1): 258, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300070

RESUMO

Neural stimulation and modulation at high spatial resolution are crucial for mediating neuronal signaling and plasticity, aiding in a better understanding of neuronal dysfunction and neurodegenerative diseases. However, developing a biocompatible and precisely controllable technique for accurate and effective stimulation and modulation of neurons at the subcellular level is highly challenging. Here, we report an optomechanical method for neural stimulation and modulation with subcellular precision using optically controlled bio-darts. The bio-dart is obtained from the tip of sunflower pollen grain and can generate transient pressure on the cell membrane with submicrometer spatial resolution when propelled by optical scattering force controlled with an optical fiber probe, which results in precision neural stimulation via precisely activation of membrane mechanosensitive ion channel. Importantly, controllable modulation of a single neuronal cell, even down to subcellular neuronal structures such as dendrites, axons, and soma, can be achieved. This bio-dart can also serve as a drug delivery tool for multifunctional neural stimulation and modulation. Remarkably, our optomechanical bio-darts can also be used for in vivo neural stimulation in larval zebrafish. This strategy provides a novel approach for neural stimulation and modulation with sub-cellular precision, paving the way for high-precision neuronal plasticity and neuromodulation.

3.
J Am Chem Soc ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39293002

RESUMO

Utilizing ultrasound as an external stimulus to remotely modulate the activity of proteins is an important aspect of sonopharmacology and establishes the basis for the emerging field of sonogenetics. Here, we describe an ultrasound-responsive protein splicing system that enables spatiotemporal control of split-intein-mediated protein ligation. The system utilizes engineered split inteins that are caged and can be activated by thrombin released from a high molar mass DNA-based carrier under focused ultrasound sonication. This approach represents a general method for controlling the functions of proteins of interest by ultrasound, as demonstrated here by the controlled synthesis of the superfolder green fluorescence protein (GFP) and calcitonin. Furthermore, calcitonin receptor-mediated signal transduction in cells was triggered by this system in vitro without harming cell viability. By expanding the sonogenetic toolbox with protein splicing technologies, this study provides a possible pathway to deploy ultrasound for remotely controlling a variety of protein functions in deep tissue in the future.

4.
Int Immunopharmacol ; 142(Pt B): 113106, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39288623

RESUMO

Clear cell renal cell carcinoma (ccRCC) represents a prevalent malignancy of the urinary system. Despite the integration of immune checkpoint inhibitors (ICIs) into the treatment paradigm for advanced RCC, resistance to immunotherapy has emerged as a pivotal determinant impacting the clinical outlook of ccRCC. Accumulating evidence underscores the pivotal role of immune evasion-related genes and pathways in enabling tumor escape from host immune surveillance, consequently influencing patients' responsiveness to immunotherapy. Nonetheless, the clinical relevance of immune evasion-related genes in ccRCC patients undergoing immunotherapy remains inadequately understood. In this study, we aggregated RNA sequencing and clinical data from ccRCC patients across three cohorts: the Cancer Genome Atlas (TCGA), CheckMate cohorts, and the JAVELIN Renal 101 trial. Leveraging a curated immune evasion-related gene set from Lawson et al., we employed the LASSO algorithm and Cox regression analysis to identify eight genes (LPAR6, RGS5, NFYC, PCDH17, CENPW, CNOT8, FOXO3, SNRPB) significantly associated with immune therapy prognosis (HR, 3.57; 95 % CI, 2.38-5.35; P<0.001). A predictive algorithm developed utilizing these genes exhibited notable accuracy in forecasting patients' progression-free survival in the training set (AUC, 0.835). Furthermore, stratification of patients by risk score revealed discernible differences in immunotherapy response and tumor microenvironment. In summary, we present a prognostic model intricately linked with immune status and treatment response. For ccRCC patients undergoing immunotherapy, this approach holds promise in aiding clinical decision-making by providing more precise and tailored treatment recommendations.

5.
Int J Food Microbiol ; 422: 110822, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013210

RESUMO

Foodborne illnesses, caused by harmful microorganisms in food, are a significant global health issue. Current methods for identifying these pathogens are both labor-intensive and time-consuming. In this research, we devised a swift and precise detection technique using recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) for three foodborne pathogens found in meat. By employing a dedicated detection device, RPA-LFD allows for the rapid analysis of DNA from Escherichia coli O157 (E. coli O157), Salmonella, and Shigella-pathogens that are prohibited in food. The detection thresholds for E. coli O157, Salmonella, and Shigella are 0.168 fg/µl (1.04 CFU/ml), 0.72 fg/µl (27.49 CFU/ml), and 1.25 fg/µl (48.84 CFU/ml), respectively. This method provides a short detection window, operates at low temperatures, follows simple procedures, and exhibits high sensitivity. Our study establishes the RPA-LFD method for simultaneously identifying the nucleic acid of three foodborne pathogens, offering an efficient solution for quickly identifying multiple contaminants.


Assuntos
Escherichia coli O157 , Contaminação de Alimentos , Microbiologia de Alimentos , Técnicas de Amplificação de Ácido Nucleico , Recombinases , Salmonella , Shigella , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/genética , Salmonella/isolamento & purificação , Salmonella/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Microbiologia de Alimentos/métodos , Recombinases/metabolismo , Shigella/isolamento & purificação , Shigella/genética , Contaminação de Alimentos/análise , Carne/microbiologia , DNA Bacteriano/genética , Animais , Sensibilidade e Especificidade , Doenças Transmitidas por Alimentos/microbiologia
6.
Meat Sci ; 217: 109606, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39033556

RESUMO

This study aims to evaluate the pork meat quality after ultrasonic brining at different frequencies, thereby providing a more comprehensive understanding of the effects of ultrasound marination on meat. The texture profile analysis showed that ultrasonic curing at various frequencies significantly improved the textural properties of samples, especially at 26.8 kHz, resulting in a reduction of tenderness, hardness, and chewiness values by 44%, 43%, and 44%, respectively. The cooking loss of samples marinated by ultrasound decreased from 27% without ultrasonic treatment to 22%, indicating a significant improvement in water-holding capacity, while the changes in pH had only a subtle impact on pork quality. Meanwhile, the color of pork became more rosy hue due to decreased L⁎ values and increased a⁎ values, which was mainly attributed to an elevated proportion of oxymyoglobin and reduced metmyoglobin content. Additionally, ultrasonic marination did not exert a negative impact on the oxidation of pork protein and lipids. After roasting, samples marinated by ultrasound exhibited a significantly higher abundance of volatile flavor compounds compared to static marinated meat (with an increase of 16 flavor substances) and fresh pork (with an increase of 24 flavor substances), demonstrating the efficacy of ultrasonic marination in enhancing the overall flavor and taste profile of pork. Consequently, the application of ultrasonic technology holds great potential for the "home kitchen type" rapid marination.


Assuntos
Culinária , Manipulação de Alimentos , Mioglobina , Carne de Porco , Compostos Orgânicos Voláteis , Animais , Mioglobina/análise , Carne de Porco/análise , Compostos Orgânicos Voláteis/análise , Suínos , Culinária/métodos , Manipulação de Alimentos/métodos , Paladar , Cor , Temperatura Baixa
7.
Phytomedicine ; 132: 155839, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943694

RESUMO

BACKGROUND: Hyperlipidemia, inadequate diet, and excessive medication increase the risk of cardiovascular disease. Paeonl (Pae), a phenolic compound found in Peony and Angelica dahurica, can alleviate lipid metabolism disorders and lipotoxicity. However, the molecular mechanism of Pae alleviating hyperlipidemia remains unclear and needs to be further explored. PURPOSE: In this study, we explored whether Pae can prevent hyperlipidemia and investigated the molecular mechanisms. METHODS: The effects of Pae (30, 45, 60mg·kg-1) on hyperlipidemia in Tyloapol-induced WT mice and Nrf2 knockout mice (Pae: 60mg·kg-1) were detected by oil red O staining, HE staining, TG, TC and other indexes. The expression levels of proinflammatory mediators, key lipid proteins and autophagy signaling pathway proteins were analyzed by enzyme-linked immunosorbent assay, western blot and immunofluorescence. The molecular mechanism of Pae alleviating hyperlipidemia was explored through molecular docking technique and in vivo and in vitro experiments. RESULTS: Several studies indicated that Pae effectively improved tyloxapol (Ty)-induced lipid metabolism disorder, as evidenced by decreased triglyceride content, increased carnitine palmitoyltransferase 1 (CPT1), and Sirtuin 1 (Sirt1) protein expression. In addition, Pae ameliorated hyperlipidemia by activating the AMPK/ACC and PI3K/mTOR pathways. Interestingly, the therapeutic effect of Pae on hyperlipidemia was markedly reduced in Nrf2-/- mice. Molecular docking results indicated that Pae and Nrf2 exhibited good binding ability, suggesting that Nrf2 is a core target mediating the effects of Pae in the treatment of hyperlipidemia. Taken together, Pae alleviated hyperlipidemia in vivo and ameliorated lipid accumulation in vitro by activating AMPK/ACC and PI3K/mTOR signaling pathways via Nrf2 binding. CONCLUSION: Our data suggest that paeonol can ameliorate hyperlipidemia and autophagy in mice by regulating Nrf2 and AMPK/mTOR pathways, and it has potential therapeutic value in the occurrence and development of hyperlipidemia.


Assuntos
Proteínas Quinases Ativadas por AMP , Acetofenonas , Autofagia , Hiperlipidemias , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hiperlipidemias/tratamento farmacológico , Autofagia/efeitos dos fármacos , Acetofenonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular
8.
Bioact Mater ; 40: 168-181, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38910968

RESUMO

Bone, renowned for its elegant hierarchical structure and unique mechanical properties, serves as a constant source of inspiration for the development of synthetic materials. However, achieving accurate replication of bone features in artificial materials with remarkable structural and mechanical similarity remains a significant challenge. In this study, we employed a cascade of continuous fabrication processes, including biomimetic mineralization of collagen, bidirectional freeze-casting, and pressure-driven fusion, to successfully fabricate a macroscopic bulk material known as artificial compact bone (ACB). The ACB material closely replicates the composition, hierarchical structures, and mechanical properties of natural bone. It demonstrates a lamellated alignment of mineralized collagen (MC) microfibrils, similar to those found in natural bone. Moreover, the ACB exhibits a similar high mineral content (70.9 %) and density (2.2 g/cm3) as natural cortical bone, leading to exceptional mechanical properties such as high stiffness, hardness, and flexural strength that are comparable to those of natural bone. Importantly, the ACB also demonstrates excellent mechanical properties in wet, outstanding biocompatibility, and osteogenic properties in vivo, rendering it suitable for a broad spectrum of biomedical applications, including orthopedic, stomatological, and craniofacial surgeries.

9.
J Inflamm Res ; 17: 3983-3999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911987

RESUMO

Background: Interstitial lung disease (ILD), characterized by pulmonary fibrosis (PF), represents the end-stage of various ILDs. The immune system plays an important role in the pathogenesis of PF. V-domain immunoglobulin suppressor of T-cell activation (VISTA) is an immune checkpoint with immune suppressive functions. However, its specific role in the development of PF and the underlying mechanisms remain to be elucidated. Methods: We assessed the expression of VISTA in CD4 T cells from patients with connective tissue disease-related interstitial lung disease (CTD-ILD). Spleen cells from wild-type (WT) or Vsir -/- mice were isolated and induced for cell differentiation in vitro. Additionally, primary lung fibroblasts were isolated and treated with interleukin-17A (IL-17A). Mice were challenged with bleomycin (BLM) following VISTA blockade or Vsir knockout. Moreover, WT or Vsir -/- CD4 T cells were transferred into Rag1 -/- mice, which were then challenged with BLM. Results: VISTA expression was decreased in CD4 T cells from patients with CTD-ILD. Vsir deficiency augmented T-helper 17 (Th17) cell differentiation in vitro. Furthermore, IL-17A enhanced the production of inflammatory cytokines, as well as the differentiation and migration of lung fibroblasts. Both VISTA blockade and knockout of Vsir increased the percentage of IL-17A-producing Th17 cells and promoted BLM-induced PF. In addition, mice receiving Vsir -/- CD4 T cells exhibited a higher percentage of Th17 cells and more severe PF compared to those receiving WT CD4 T cells. Conclusion: These findings demonstrate the significant role of VISTA in modulating the development of PF by controlling Th17 cell differentiation. These insights suggest that targeting VISTA could be a promising therapeutic strategy for PF.

10.
BMC Musculoskelet Disord ; 25(1): 494, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926741

RESUMO

OBJECTIVE: Autologous iliac bone is commonly used as a bone graft material to achieve solid fusion in craniocervical junction (CVJ) surgery. However, the developing iliac bone of children is less than ideal as a bone graft material. The matured rib bone of children presents a potential substitute material for iliac bone. The aim of this study was to evaluate the efficacy of autologous rib grafts for craniocervical junction surgery in children. METHODS: The outcomes of 10 children with abnormalities of the craniocervical junction who underwent craniocervical junction surgery between January 2020 and December 2022 were retrospectively reviewed. All patients underwent posterior fusion and internal fixation surgery with autologous rib grafts. Pre- and post-operative images were obtained and clinical follow-ups were conducted to evaluate neurological function, pain level, donor site complications, and bone fusion rates. RESULTS: All surgeries were successful. During the 8- to 24-month follow-up period, all patients achieved satisfactory clinical results. Computed tomography at 3-6 months confirmed successful bone fusion and regeneration of the rib defect in all patients with no neurological or donor site complications. CONCLUSION: Autologous rib bone is a safe and effective material for bone grafting in craniocervical junction fusion surgery for children that can reduce the risks of donor site complications and increase the amount of bone graft, thereby achieving a higher bone fusion rate.


Assuntos
Transplante Ósseo , Costelas , Fusão Vertebral , Transplante Autólogo , Humanos , Criança , Masculino , Feminino , Estudos Retrospectivos , Fusão Vertebral/métodos , Transplante Ósseo/métodos , Costelas/transplante , Costelas/cirurgia , Transplante Autólogo/métodos , Resultado do Tratamento , Pré-Escolar , Adolescente , Articulação Atlantoaxial/cirurgia , Articulação Atlantoaxial/diagnóstico por imagem , Seguimentos , Vértebras Cervicais/cirurgia , Vértebras Cervicais/diagnóstico por imagem , Articulação Atlantoccipital/cirurgia , Articulação Atlantoccipital/diagnóstico por imagem , Tomografia Computadorizada por Raios X
11.
Eur Spine J ; 33(8): 3043-3048, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750099

RESUMO

OBJECTIVE: To develop posterior reduction forceps for atlantoaxial dislocation and evaluate the preliminary clinical application of this forceps in assisting simple posterior screw-rod system reduction and fixation in the treatment of irreducible atlantoaxial dislocation. METHODS: Based on the posterior atlantoaxial screw-rod system, posterior reduction forceps was developed to assist simple posterior screw-rod system for the treatment of irreducible atlantoaxial dislocation. From January 2021 to October 2022, 10 cases with irreducible atlantoaxial dislocation were treated with this technique. The Japanese Orthopaedic Association (JOA) score was applied before and after surgery to evaluate the neurological status of the patient, and the Atlanto-dental interval (ADI) was measured before and after surgery to evaluate the atlantoaxial reduction. X-ray and CT were performed to evaluate internal fixation, atlantoaxial sequence and bone graft fusion during regular follow-up. MRI was performed to evaluate the status of atlantoaxial reduction and spinal cord compression after surgery. RESULTS: All 10 patients were successfully operated, and there were no complications such as spinal nerve and vascular injury. Postoperative clinical symptoms were significantly relieved in all patients, and postoperative JOA score and ADI were significantly improved compared with those before surgery (P < 0.05). CONCLUSIONS: The developed posterior reduction forceps for atlantoaxial dislocation can assist the simple posterior screw-rod system in the treatment of irreducible atlantoaxial dislocation to avoid the release in anterior or posterior approach and reduce the difficulty of surgery. The preliminary results of this technique are satisfactory and it has a good application prospect.


Assuntos
Articulação Atlantoaxial , Luxações Articulares , Humanos , Articulação Atlantoaxial/cirurgia , Articulação Atlantoaxial/diagnóstico por imagem , Luxações Articulares/cirurgia , Luxações Articulares/diagnóstico por imagem , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Parafusos Ósseos , Adulto Jovem , Resultado do Tratamento , Adolescente
12.
Environ Pollut ; 351: 124077, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705447

RESUMO

In this paper, the S-scheme/Schottky heterojunction photocatalyst (CuInS2/Bi/Bi2MoO6, CIS/Bi/BMO) was successfully constructed via a facile in-situ solvothermal method, aimed at enhancing its photocatalytic performance. The results of the study on the photocatalytic degradation of diclofenac sodium (DCF) under simulated solar light irradiation revealed that the as-prepared composite exhibited remarkable catalytic efficiency in comparison to the pristine Bi2MoO6 and CuInS2. The plasmonic bismuth (Bi) was formed during the solvothermal process. Subsequently, CuInS2 and Bi were grown on the surface of Bi2MoO6 leading to forming CIS/BMO S-scheme heterojunction, along with a Schottky junction between Bi and Bi2MoO6. The use of ethylene glycol as a support was the main reason for the significant improvement in photocatalytic efficiency in the degradation of DCF. Moreover, the probable photocatalytic mechanisms for the degradation of DCF had been proposed based on the active species quenching experiments. The eleven degradation products were detected by HPLC-MS, and the degradation reaction pathway of DCF was deduced. Additionally, the CIS/Bi/BMO photocatalyst exhibited a consistently high removal rate after four cycles. This study proposes a new strategy for designing efficient S-scheme/Schottky heterojunction photocatalysts for solar energy conversion.


Assuntos
Bismuto , Cobre , Diclofenaco , Fotólise , Bismuto/química , Diclofenaco/química , Catálise , Cobre/química , Poluentes Químicos da Água/química , Molibdênio/química , Índio/química , Processos Fotoquímicos
13.
ACS Appl Mater Interfaces ; 16(20): 26713-26732, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38723291

RESUMO

To solve the problem of ice condensation and adhesion, it is urgent to develop new anti-icing and deicing technologies. This study presented the development of a highly efficient photothermal-enhanced superhydrophobic PDMS/Ni@Ti3C2Tx composite film (m-NMPA) fabricated cost-effectively and straightforwardly. This film was fabricated utilizing PDMS as a hydrophobic agent, adhesive, and surface protector, while Ni@Ti3C2Tx as a magnetic photothermal filler innovatively. Through a simple spraying method, the filler is guided by a strong magnetic field to self-assemble into an eyelash-like microstructure array. The unique structure not only imparts superhydrophobic properties to the surface but also constructs an efficient "light-capturing" architecture. Remarkably, the m-NMPA film demonstrates outstanding superhydrophobic passive anti-icing and efficient photothermal active deicing performance without the use of fluorinated chemicals. The micro-/nanostructure of the film forms a gas layer, significantly delaying the freezing time of water. Particularly under extreme cold conditions (-30 °C), the freezing time is extended by a factor of 7.3 compared to the bare substrate. Furthermore, under sunlight exposure, surface droplets do not freeze. The excellent photothermal performance is attributed to the firm anchoring of nickel particles on the MXene surface, facilitating effective "point-to-face" photothermal synergy. The eyelash-like microarray structure enhances light-capturing capability, resulting in a high light absorption rate of 98%. Furthermore, the microstructure aids in maintaining heat at the uppermost layer of the surface, maximizing the utilization of thermal energy for ice melting and frost thawing. Under solar irradiation, the m-NMPA film can rapidly melt approximately a 4 mm thick ice layer within 558 s and expel the melted water promptly, reducing the risk of secondary icing. Additionally, the ice adhesion force on the surface of the m-NMPA film is remarkably low, with an adhesion strength of approximately 4.7 kPa for a 1 × 1 cm2 ice column. After undergoing rigorous durability tests, including xenon lamp weathering test, pressure resistance test, repeated adhesive tape testing, xenon lamp irradiation, water drop impact testing, and repeated brushing with hydrochloric acid and particles, the film's surface structure and superhydrophobic performance have remained exceptional. The photothermal superhydrophobic passive anti-icing and active deicing technology in this work rely on sustainable solar energy for efficient heat generation. It presents broad prospects for practical applications with advantages such as simple processing method, environmental friendliness, outstanding anti-icing effects, and exceptional durability.

14.
Anal Chim Acta ; 1307: 342631, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719408

RESUMO

BACKGROUND: Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spots". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. RESULTS: The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 µg L-1. SIGNIFICANCE: The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors - the interference generated by uncontrollable SERS "hot spots" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environmental contaminants.


Assuntos
Aptâmeros de Nucleotídeos , Ouro , Aprendizado de Máquina , Nanopartículas Metálicas , Prata , Análise Espectral Raman , Aptâmeros de Nucleotídeos/química , Prata/química , Ouro/química , Nanopartículas Metálicas/química , Cloranfenicol/análise , Estradiol/análise , Técnicas Biossensoriais/métodos , Contaminação de Alimentos/análise , Limite de Detecção
15.
Plant Mol Biol ; 114(3): 49, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642182

RESUMO

Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.


Assuntos
Brassica napus , Plântula , Plântula/genética , Sementes/genética , Cotilédone/genética , Lipídeos , Aminoácidos/metabolismo , Brassica napus/metabolismo
16.
Heliyon ; 10(7): e28923, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586326

RESUMO

At present, there are few options for third line and above treatment of advanced gastric cancer and the single drug effect is poor. HER2 positive gastric cancer is an important subtype of gastric cancer and has certain immune characteristics. The combination of HER2 inhibitor and PD-1 inhibitor has a synergistic effect, and anti-tumor drugs targeting HER2 can play an anti-angiogenesis role by downregulating VEGF. We report a patient with HER2-positive gastric cancer who developed post-operative tumor recurrence and metastasis after adjuvant chemotherapy and radiotherapy. Trastuzumab combined with albumin paclitaxel was used as second-line treatment with progression-free survival for 9 months. In third line treatment, we retained trastuzumab and combined it with camrelizumab and apatinib. During the treatment period, although the patient stopped taking the drugs due to the side effects of camrelizumab and apatinib, he achieved a PFS of 10.4 months. Considering the good effect of the third line treatment, we added another PD-1 inhibitor and continued to combine trastuzumab treatment. We found that the patient still benefited from the treatment and continued to survive for another 4 months. At present, the patient is treated with DisitamabVedotin (HER2-ADC) combined with PD-1 inhibitor, and no overall survival outcome has been observed.

17.
Small Methods ; : e2400223, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602202

RESUMO

Three dimensional (3D) extrusion bioprinting aims to replicate the complex architectures and functions of natural tissues and organs. However, the conventional hydrogel and new-emerging microgel bioinks are both difficult in achieving simultaneously high shape-fidelity and good maintenance of cell viability/function, leading to limited amount of qualified hydrogel/microgel bioinks. Herein, a universal strategy is reported to construct high-performance microgel assembly (MA) bioinks by using epigallocatechin gallate-modified hyaluronic acid (HA-EGCG) as coating agent and phenylboronic acid grafted hyaluronic acid (HA-PBA) as assembling agent. HA-EGCG can spontaneously form uniform coating on the microgel surface via mussel-inspired chemistry, while HA-PBA quickly forms dynamic phenylborate bonds with HA-EGCG, conferring the as-prepared MA bioinks with excellent rheological properties, self-healing, and tissue-adhesion. More importantly, this strategy is applicable to various microgel materials, enabling the preparation of homo- and heterogeneous MA (homo-MA and hetero-MA) bioinks and the hierarchical printing of complicated structures with high fidelity by integration of different microgels containing multiple materials/cells in spatial and compositional levels. It further demonstrates the printing of breast cancer organoid in vitro using homo-MA and hetero-MA bioinks and its preliminary application for drug testing. This universal strategy offers a new solution to construct high-performance bioinks for extrusion bioprinting.

18.
Drug Deliv Transl Res ; 14(10): 2629-2641, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38498080

RESUMO

Drug delivery to central nervous pathologies is compromised by the blood-brain barrier (BBB). A clinically explored strategy to promote drug delivery across the BBB is sonopermeation, which relies on the combined use of ultrasound (US) and microbubbles (MB) to induce temporally and spatially controlled opening of the BBB. We developed an advanced in vitro BBB model to study the impact of sonopermeation on the delivery of the prototypic polymeric drug carrier pHPMA as a larger molecule and the small molecule antiviral drug ribavirin. This was done under standard and under inflammatory conditions, employing both untargeted and RGD peptide-coated MB. The BBB model is based on human cerebral capillary endothelial cells and human placental pericytes, which are co-cultivated in transwell inserts and which present with proper transendothelial electrical resistance (TEER). Sonopermeation induced a significant decrease in TEER values and facilitated the trans-BBB delivery of fluorescently labeled pHPMA (Atto488-pHPMA). To study drug delivery under inflamed endothelial conditions, which are typical for e.g. tumors, neurodegenerative diseases and CNS infections, tumor necrosis factor (TNF) was employed to induce inflammation in the BBB model. RGD-coated MB bound to and permeabilized the inflamed endothelium-pericyte co-culture model, and potently improved Atto488-pHPMA and ribavirin delivery. Taken together, our work combines in vitro BBB bioengineering with MB-mediated drug delivery enhancement, thereby providing a framework for future studies on optimization of US-mediated drug delivery to the brain.


Assuntos
Barreira Hematoencefálica , Técnicas de Cocultura , Células Endoteliais , Microbolhas , Oligopeptídeos , Pericitos , Barreira Hematoencefálica/metabolismo , Humanos , Oligopeptídeos/química , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacocinética , Pericitos/metabolismo , Pericitos/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Ribavirina/administração & dosagem , Ribavirina/química , Ribavirina/farmacocinética , Ondas Ultrassônicas , Polímeros/química , Polímeros/administração & dosagem , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacologia , Antivirais/farmacocinética , Inflamação/tratamento farmacológico
19.
Food Chem ; 447: 138950, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492292

RESUMO

To better understanding the effects of ultrasonic marination on the porcine tissue, the moisture migration and microstructure were investigated in this study. Additionally, the acoustic field distribution was analysis using COMSOL Multiphysics. The low-filed NMR results demonstrated that ultrasonic curing induced a leftward shift in T21 and a rightward shift in T22, accompanied by a significant reduction in A22, thereby enhancing the water-holding capacity of pork. The SEM and TEM observation showed that the presence of larger interstitial gaps between muscle fibers facilitated the diffusion of NaCl. The simulation analysis revealed that the acoustic field at 26.8 kHz showed minimal standing wave effects and more pronounced cavitation, which was the main reason for the best curing effect at this frequency. The scale-up test showed the NaCl content in pork reached 1% after ultrasound curing, indicating the potential application of ultrasonic marination technology in domestic refrigerators.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Cloreto de Sódio/química , Fenômenos Químicos , Difusão , Água/química
20.
Front Immunol ; 15: 1290564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545097

RESUMO

Background: Sepsis is one of the major causes of death and increased health care burden in modern intensive care units. Immune checkpoints have been prompted to be key modulators of T cell activation, T cell tolerance and T cell exhaustion. This study was designed to investigate the role of the negative immune checkpoint, T cell immunoglobulin and ITIM domain (TIGIT), in the early stage of sepsis. Method: An experimental murine model of sepsis was developed by cecal ligation and puncture (CLP). TIGIT and CD155 expression in splenocytes at different time points were assessed using flow cytometry. And the phenotypes of TIGIT-deficient (TIGIT-/-) and wild-type (WT) mice were evaluated to explore the engagement of TIGIT in the acute phase of sepsis. In addition, the characteristics were also evaluated in the WT septic mice pretreated with anti-TIGIT antibody. TIGIT and CD155 expression in tissues was measured using real-time quantitative PCR and immunofluorescence staining. Proliferation and effector function of splenic immune cells were evaluated by flow cytometry. Clinical severity and tissue injury were scored to evaluate the function of TIGIT on sepsis. Additionally, tissue injury biomarkers in peripheral blood, as well as bacterial load in peritoneal lavage fluid and liver were also measured. Results: The expression of TIGIT in splenic T cells and NK cells was significantly elevated at 24 hours post CLP.TIGIT and CD155 mRNA levels were upregulated in sepsis-involved organs when mice were challenged with CLP. In CLP-induced sepsis, CD4+ T cells from TIGIT-/- mice shown increased proliferation potency and cytokine production when compared with that from WT mice. Meanwhile, innate immune system was mobilized in TIGIT-/- mice as indicated by increased proportion of neutrophils and macrophages with potent effector function. In addition, tissue injury and bacteria burden in the peritoneal cavity and liver was reduced in TIGIT-/- mice with CLP induced sepsis. Similar results were observed in mice treated with anti-TIGIT antibody. Conclusion: TIGIT modulates CD4+ T cell response against polymicrobial sepsis, suggesting that TIGIT could serve as a potential therapeutic target for sepsis.


Assuntos
Sepse , Linfócitos T , Animais , Camundongos , Linfócitos T CD4-Positivos , Células Matadoras Naturais , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA