Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Brain Commun ; 6(3): fcae202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911266

RESUMO

While voltage-gated potassium channels have critical roles in controlling neuronal excitability, they also have non-ion-conducting functions. Kv8.1, encoded by the KCNV1 gene, is a 'silent' ion channel subunit whose biological role is complex since Kv8.1 subunits do not form functional homotetramers but assemble with Kv2 to modify its ion channel properties. We profiled changes in ion channel expression in amyotrophic lateral sclerosis patient-derived motor neurons carrying a superoxide dismutase 1(A4V) mutation to identify what drives their hyperexcitability. A major change identified was a substantial reduction of KCNV1/Kv8.1 expression, which was also observed in patient-derived neurons with C9orf72 expansion. We then studied the effect of reducing KCNV1/Kv8.1 expression in healthy motor neurons and found it did not change neuronal firing but increased vulnerability to cell death. A transcriptomic analysis revealed dysregulated metabolism and lipid/protein transport pathways in KCNV1/Kv8.1-deficient motor neurons. The increased neuronal vulnerability produced by the loss of KCNV1/Kv8.1 was rescued by knocking down Kv2.2, suggesting a potential Kv2.2-dependent downstream mechanism in cell death. Our study reveals, therefore, unsuspected and distinct roles of Kv8.1 and Kv2.2 in amyotrophic lateral sclerosis-related neurodegeneration.

2.
Cell Rep ; 35(10): 109224, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107252

RESUMO

Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders.


Assuntos
Esclerose Lateral Amiotrófica/genética , Diferenciação Celular , Humanos , Fenótipo
3.
Nat Neurosci ; 22(2): 167-179, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643292

RESUMO

The findings that amyotrophic lateral sclerosis (ALS) patients almost universally display pathological mislocalization of the RNA-binding protein TDP-43 and that mutations in its gene cause familial ALS have nominated altered RNA metabolism as a disease mechanism. However, the RNAs regulated by TDP-43 in motor neurons and their connection to neuropathy remain to be identified. Here we report transcripts whose abundances in human motor neurons are sensitive to TDP-43 depletion. Notably, expression of STMN2, which encodes a microtubule regulator, declined after TDP-43 knockdown and TDP-43 mislocalization as well as in patient-specific motor neurons and postmortem patient spinal cord. STMN2 loss upon reduced TDP-43 function was due to altered splicing, which is functionally important, as we show STMN2 is necessary for normal axonal outgrowth and regeneration. Notably, post-translational stabilization of STMN2 rescued neurite outgrowth and axon regeneration deficits induced by TDP-43 depletion. We propose that restoring STMN2 expression warrants examination as a therapeutic strategy for ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Neurônios Motores/metabolismo , Axônios/metabolismo , Linhagem Celular , Regulação para Baixo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Medula Espinal/metabolismo , Estatmina
4.
Cell Metab ; 28(4): 605-618.e6, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-29909971

RESUMO

Mutations in PLA2G6 (PARK14) cause neurodegenerative disorders in humans, including autosomal recessive neuroaxonal dystrophy and early-onset parkinsonism. We show that loss of iPLA2-VIA, the fly homolog of PLA2G6, reduces lifespan, impairs synaptic transmission, and causes neurodegeneration. Phospholipases typically hydrolyze glycerol phospholipids, but loss of iPLA2-VIA does not affect the phospholipid composition of brain tissue but rather causes an elevation in ceramides. Reducing ceramides with drugs, including myriocin or desipramine, alleviates lysosomal stress and suppresses neurodegeneration. iPLA2-VIA binds the retromer subunits Vps35 and Vps26 and enhances retromer function to promote protein and lipid recycling. Loss of iPLA2-VIA impairs retromer function, leading to a progressive increase in ceramide. This induces a positive feedback loop that affects membrane fluidity and impairs retromer function and neuronal function. Similar defects are observed upon loss of vps26 or vps35 or overexpression of α-synuclein, indicating that these defects may be common in Parkinson disease.


Assuntos
Ceramidas/metabolismo , Proteínas de Drosophila/metabolismo , Fosfolipases A2 do Grupo VI/metabolismo , Fosfolipases A2 do Grupo X/metabolismo , Doença de Parkinson/metabolismo , Proteínas de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Drosophila/genética , Proteínas de Drosophila/química , Retroalimentação Fisiológica , Feminino , Fosfolipases A2 do Grupo VI/genética , Células HeLa , Humanos , Lisossomos/metabolismo , Masculino , Fluidez de Membrana , Mutação , Neurônios/metabolismo , Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Esfingolipídeos/metabolismo
5.
Elife ; 52016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901468

RESUMO

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by mutations in Frataxin (FXN). Loss of FXN causes impaired mitochondrial function and iron homeostasis. An elevated production of reactive oxygen species (ROS) was previously proposed to contribute to the pathogenesis of FRDA. We recently showed that loss of frataxin homolog (fh), a Drosophila homolog of FXN, causes a ROS independent neurodegeneration in flies (Chen et al., 2016). In fh mutants, iron accumulation in the nervous system enhances the synthesis of sphingolipids, which in turn activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2) to trigger neurodegeneration of adult photoreceptors. Here, we show that loss of Fxn in the nervous system in mice also activates an iron/sphingolipid/PDK1/Mef2 pathway, indicating that the mechanism is evolutionarily conserved. Furthermore, sphingolipid levels and PDK1 activity are also increased in hearts of FRDA patients, suggesting that a similar pathway is affected in FRDA.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Fatores de Transcrição MEF2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Animais , Ataxia de Friedreich/patologia , Técnicas de Inativação de Genes , Humanos , Proteínas de Ligação ao Ferro/genética , Camundongos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Frataxina
6.
Elife ; 52016 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-27343351

RESUMO

Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/Pdk1/Mef2 pathway may play a role in FRDA.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas de Drosophila/metabolismo , Ataxia de Friedreich/fisiopatologia , Proteínas de Ligação ao Ferro/genética , Ferro/toxicidade , Fatores de Regulação Miogênica/metabolismo , Esfingolipídeos/biossíntese , Animais , Modelos Animais de Doenças , Drosophila , Frataxina
7.
PLoS Genet ; 12(5): e1006054, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27195754

RESUMO

Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.


Assuntos
Proteínas de Drosophila/genética , Olho/metabolismo , Cinesinas/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Cinesinas/metabolismo , Camundongos , Células Fotorreceptoras/metabolismo , Poliubiquitina , Proteólise , RNA Interferente Pequeno , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Peixe-Zebra/genética
8.
Dis Model Mech ; 9(3): 235-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26935102

RESUMO

Many of the internal organ systems of Drosophila melanogaster are functionally analogous to those in vertebrates, including humans. Although humans and flies differ greatly in terms of their gross morphological and cellular features, many of the molecular mechanisms that govern development and drive cellular and physiological processes are conserved between both organisms. The morphological differences are deceiving and have led researchers to undervalue the study of invertebrate organs in unraveling pathogenic mechanisms of diseases. In this review and accompanying poster, we highlight the physiological and molecular parallels between fly and human organs that validate the use of Drosophila to study the molecular pathogenesis underlying human diseases. We discuss assays that have been developed in flies to study the function of specific genes in the central nervous system, heart, liver and kidney, and provide examples of the use of these assays to address questions related to human diseases. These assays provide us with simple yet powerful tools to study the pathogenic mechanisms associated with human disease-causing genes.


Assuntos
Doença , Drosophila melanogaster/fisiologia , Animais , Bioensaio , Humanos , Especificidade de Órgãos
9.
Elife ; 42015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25824290

RESUMO

Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Biblioteca Gênica , Mutagênese Insercional , Interferência de RNA , Animais , Animais Geneticamente Modificados , Western Blotting , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva/genética , Larva/metabolismo , Aprendizagem/fisiologia , Microscopia Confocal , Fatores de Tempo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo
10.
Neuron ; 84(4): 764-77, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25451193

RESUMO

Presynaptic resting Ca(2+) influences synaptic vesicle (SV) release probability. Here, we report that a TRPV channel, Inactive (Iav), maintains presynaptic resting [Ca(2+)] by promoting Ca(2+) release from the endoplasmic reticulum in Drosophila motor neurons, and is required for both synapse development and neurotransmission. We find that Iav activates the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin, which is essential for presynaptic microtubule stabilization at the neuromuscular junction. Thus, loss of Iav induces destabilization of presynaptic microtubules, resulting in diminished synaptic growth. Interestingly, expression of human TRPV1 in Iav-deficient motor neurons rescues these defects. We also show that the absence of Iav causes lower SV release probability and diminished synaptic transmission, whereas Iav overexpression elevates these synaptic parameters. Together, our findings indicate that Iav acts as a key regulator of synaptic development and function by influencing presynaptic resting [Ca(2+)].


Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Canais Iônicos/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Canais de Cátion TRPV/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Retículo Endoplasmático/metabolismo , Canais Iônicos/genética , Vesículas Sinápticas/metabolismo , Canais de Cátion TRPV/genética
11.
Elife ; 32014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25313867

RESUMO

Mitochondrial fusion and fission affect the distribution and quality control of mitochondria. We show that Marf (Mitochondrial associated regulatory factor), is required for mitochondrial fusion and transport in long axons. Moreover, loss of Marf leads to a severe depletion of mitochondria in neuromuscular junctions (NMJs). Marf mutants also fail to maintain proper synaptic transmission at NMJs upon repetitive stimulation, similar to Drp1 fission mutants. However, unlike Drp1, loss of Marf leads to NMJ morphology defects and extended larval lifespan. Marf is required to form contacts between the endoplasmic reticulum and/or lipid droplets (LDs) and for proper storage of cholesterol and ecdysone synthesis in ring glands. Interestingly, human Mitofusin-2 rescues the loss of LD but both Mitofusin-1 and Mitofusin-2 are required for steroid-hormone synthesis. Our data show that Marf and Mitofusins share an evolutionarily conserved role in mitochondrial transport, cholesterol ester storage and steroid-hormone synthesis.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ecdisona/biossíntese , Proteínas de Membrana/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Colesterol/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Gotículas Lipídicas/metabolismo , Longevidade/genética , Proteínas de Membrana/deficiência , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Sinapses/genética , Transmissão Sináptica , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
12.
Cell ; 159(1): 200-214, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25259927

RESUMO

Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.


Assuntos
Doença/genética , Drosophila melanogaster/genética , Testes Genéticos , Padrões de Herança , Interferência de RNA , Animais , Modelos Animais de Doenças , Humanos , Cromossomo X
13.
PLoS Biol ; 12(1): e1001777, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24492843

RESUMO

Vesicular trafficking plays a key role in tuning the activity of Notch signaling. Here, we describe a novel and conserved Rab geranylgeranyltransferase (RabGGT)-α-like subunit that is required for Notch signaling-mediated lateral inhibition and cell fate determination of external sensory organs. This protein is encoded by tempura, and its loss affects the secretion of Scabrous and Delta, two proteins required for proper Notch signaling. We show that Tempura forms a heretofore uncharacterized RabGGT complex that geranylgeranylates Rab1 and Rab11. This geranylgeranylation is required for their proper subcellular localization. A partial dysfunction of Rab1 affects Scabrous and Delta in the secretory pathway. In addition, a partial loss Rab11 affects trafficking of Delta. In summary, Tempura functions as a new geranylgeranyltransferase that regulates the subcellular localization of Rab1 and Rab11, which in turn regulate trafficking of Scabrous and Delta, thereby affecting Notch signaling.


Assuntos
Dimetilaliltranstransferase/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/genética , Receptores Notch/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/genética , Animais , Dimetilaliltranstransferase/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Prenilação de Proteína , Subunidades Proteicas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo
14.
J Neurosci ; 32(45): 16018-30, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136438

RESUMO

Trans-synaptic adhesion between Neurexins (Nrxs) and Neuroligins (Nlgs) is thought to be required for proper synapse organization and modulation, and mutations in several human Nlgs have shown association with autism spectrum disorders. Here we report the generation and phenotypic characterization of Drosophila neuroligin 2 (dnlg2) mutants. Loss of dnlg2 results in reduced bouton numbers, aberrant presynaptic and postsynaptic development at neuromuscular junctions (NMJs), and impaired synaptic transmission. In dnlg2 mutants, the evoked responses are decreased in amplitude, whereas the total active zone (AZ) numbers at the NMJ are comparable to wild type, suggesting a decrease in the release probability. Ultrastructurally, the presynaptic AZ number per bouton area and the postsynaptic density area are both increased in dnlg2 mutants, whereas the subsynaptic reticulum is reduced in volume. We show that both presynaptic and postsynaptic expression of Dnlg2 is required to restore synaptic growth and function in dnlg2 mutants. Postsynaptic expression of Dnlg2 in dnlg2 mutants and wild type leads to reduced bouton growth whereas presynaptic and postsynaptic overexpression in wild-type animals results in synaptic overgrowth. Since Nlgs have been shown to bind to Nrxs, we created double mutants. These mutants are viable and display phenotypes that closely resemble those of dnlg2 and dnrx single mutants. Our results provide compelling evidence that Dnlg2 functions both presynaptically and postsynaptically together with Neurexin to determine the proper number of boutons as well as the number of AZs and size of synaptic densities during the development of NMJs.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/metabolismo , Densidade Pós-Sináptica/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Animais Geneticamente Modificados , Moléculas de Adesão Celular Neuronais/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/genética , Junção Neuromuscular/ultraestrutura , Densidade Pós-Sináptica/genética , Densidade Pós-Sináptica/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura
15.
FEBS Lett ; 585(21): 3409-14, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22001206

RESUMO

The dipeptidyl peptidase (DPP) family members, including DPP-IV, DPP8, DPP9 and others, cleave the peptide bond after the penultimate proline residue and are drug target rich. The dimerization of DPP-IV is required for its activity. A propeller loop located at the dimer interface is highly conserved within the family. Here we carried out site-directed mutagenesis on the loop of DPPIV and identified several residues important for dimer formation and enzymatic activity. Interestingly, the corresponding residues on DPP9 have a different impact whereby the mutations decrease activity without changing dimerization. Thus the propeller loop seems to play a varying role in different DPPs.


Assuntos
Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Estrutura Quaternária de Proteína , Sequência de Aminoácidos , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA