Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int Immunopharmacol ; 102: 108380, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34848154

RESUMO

Discovery of anti-inflammatory drugs that can suppress T lymphocyte activation and proliferation by inhibiting TCR/CD3 and IL-2/IL-2R signaling is still needed in clinic, though rapamycin and other related reagents have made great success. Taraxasterol (TAS) is an active ingredient of dandelion, an anti-inflammatory medicinal herb with low in vivo toxicity that has long been used in China. Yet the action mechanism of TAS on lymphocytes remains elusive. The anti-inflammatory effects of TAS were evaluated in C57BL/6 mouse primary lymphocytes stimulated with concanavalin A (Con A) in vitro and in mouse model of Con A-induced acute hepatitis in vivo. Our results showed that TAS significantly suppressed Con A-induced acute hepatitis in a mouse model, reducing the hepatic necrosis areas, the release of aminotransferases, and the production of IL-2 and other inflammatory cytokines. Supporting this, in vitro study also showed that TAS reduced the production of IL-2 and the expression of IL-2 receptor subunit α (CD25) upon the stimulation of Con A, which was likely mediated by suppressing NF-κB activation. The downstream pathways of IL-2/IL-2R signaling, including the activation of PI3K/PDK1/mTOR, STAT3 and STAT5, were also suppressed by TAS. Consistently, Con A-induced T cell proliferation was also inhibited by TAS in vitro. Our data indicate that TAS can suppress both T lymphocyte activation and cell proliferation by down-regulating IL-2 expression and its signaling pathway thereby ameliorating Con A-induced acute hepatitis, highlighting TAS as a potential drug candidate for treating inflammatory diseases including autoimmune hepatitis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Interleucina-2/imunologia , Esteróis/uso terapêutico , Linfócitos T/efeitos dos fármacos , Triterpenos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Concanavalina A , Citocinas/sangue , Feminino , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Esteróis/farmacologia , Linfócitos T/imunologia , Triterpenos/farmacologia
2.
Inflammation ; 44(4): 1229-1245, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34009550

RESUMO

The NLRP3 inflammasome is a multi-molecular complex that acts as a molecular platform to mediate caspase-1 activation, leading to IL-1ß/IL-18 maturation and release in cells stimulated by various pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). This inflammasome plays an important role in the innate immunity as its activation can further promote the occurrence of inflammation, enhance the ability of host to remove pathogens, and thus facilitate the repair of injured tissues. But if the inflammasome activation is dysregulated, it will cause the development of various inflammatory diseases and metabolic disorders. Therefore, under normal conditions, the activation of inflammasome is tightly regulated by various positive and negative signaling pathways to respond to the stimuli without damaging the host itself while maintaining homeostasis. In this review, we summarize recent advances in the major signaling pathways (including TLRs, MAPK, mTOR, autophagy, PKA, AMPK, and IFNR) that regulate NLRP3 inflammasome activation, providing a brief view of the molecular network that regulates this inflammasome as a theoretical basis for therapeutic intervention of NLRP3 dysregulation-related diseases.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/fisiologia , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Animais , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Serina-Treonina Quinases TOR/metabolismo
3.
Front Immunol ; 12: 632606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679781

RESUMO

Taraxasterol (TAS) is an active ingredient of Dandelion (Taraxacum mongolicum Hand. -Mazz.), a medicinal plant that has long been used in China for treatment of inflammatory disorders. But the underlying mechanism for its therapeutic effects on inflammatory disorders is not completely clear. Inflammasome activation is a critical step of innate immune response to infection and aseptic inflammation. Among the various types of inflammasome sensors that has been reported, NLR family pyrin domain containing 3 (NLRP3) is implicated in various inflammatory diseases and therefore has been most extensively studied. In this study, we aimed to explore whether TAS could influence NLPR3 inflammasome activation in macrophages. The results showed that TAS dose-dependently suppressed the activation of caspase-1 in lipopolysaccharide (LPS)-primed murine primary macrophages upon nigericin treatment, resulting in reduced mature interleukin-1ß (IL-1ß) release and gasdermin D (GSDMD) cleavage. TAS greatly reduced ASC speck formation upon the stimulation of nigericin or extracellular ATP. Consistent with reduced cleavage of GSDMD, nigericin-induced pyroptosis was alleviated by TAS. Interestingly, TAS time-dependently suppressed the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 signaling induced by LPS priming. Like TAS, both INK-128 (inhibiting both mTORC1 and mTORC2) and rapamycin (inhibiting mTORC1 only) also inhibited NLRP3 inflammasome activation, though their effects on mTOR signaling were different. Moreover, TAS treatment alleviated mitochondrial damage by nigericin and improved mouse survival from bacterial infection, accompanied by reduced IL-1ß levels in vivo. Collectively, by inhibiting the NLRP3 inflammasome activation, TAS displayed anti-inflammatory effects likely through regulation of the mTOR signaling in macrophages, highlighting a potential action mechanism for the anti-inflammatory activity of Dandelion in treating inflammation-related disorders, which warrants further clinical investigation.


Assuntos
Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esteróis/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Infecções Bacterianas/tratamento farmacológico , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Nigericina/farmacologia , Esteróis/uso terapêutico , Análise de Sobrevida , Triterpenos/uso terapêutico
4.
Front Pharmacol ; 10: 290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971927

RESUMO

Evodiamine is a major ingredient of the plant Evodia rutaecarpa, which has long been used for treating infection-related diseases including diarrhea, beriberi and oral ulcer, but the underlying mechanism is unclear. Here we aimed to explore whether evodiamine influenced NLRP3 (NLR family, pyrin containing domain 3) inflammasome activation in macrophages, which is a critical mechanism for defending the host against pathogenic infections. We uncovered that evodiamine dose-dependently enhanced NLRP3 inflammasome activation in lipopolysaccharide-primed macrophages, as indicated by increased interleukin (IL)-1ß production and caspase-1 cleavage, accompanied by increased ASC speck formation and pyroptosis. Mechanistically, evodiamine induced acetylation of α-tubulin around the microtubule organization center (indicated by γ-tubulin) in lipopolysaccharide-primed macrophages. Such evodiamine-mediated increases in NLRP3 activation and pyroptosis were attenuated by activators of α-tubulin deacetylase, resveratrol and NAD+, or dynein-specific inhibitor ciliobrevin A. Small interfering RNA knockdown of αTAT1 (the gene encoding α-tubulin N-acetyltransferase) expression, which reduced α-tubulin acetylation, also diminished evodiamine-mediated augmentation of NLRP3 activation and pyroptosis. Evodiamine also enhanced NLRP3-mediated production of IL-1ß and neutrophil recruitment in vivo. Moreover, evodiamine administration evidently improved survival of mice with lethal bacterial infection, accompanied by increased production of IL-1ß and interferon-γ, decreased bacterial load, and dampened liver inflammation. Resveratrol treatment reversed evodiamine-induced increases of IL-1ß and interferon-γ, and decreased bacterial clearance in mice. Collectively, our results indicated that evodiamine augmented the NLRP3 inflammasome activation through inducing α-tubulin acetylation, thereby conferring intensified innate immunity against bacterial infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA