Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Psychol ; 13: 989826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582324

RESUMO

Introduction: Increasingly, business leaders and other professionals are called upon to be vulnerable and authentic in the workplace, which often includes disclosing emotions to others. While sharing emotions is known to enhance closeness, several questions remain underexplored. Specifically, disclosing personal facts about oneself and disclosing emotions have often been studied together, making it difficult to determine the effects of disclosing emotions per se. Moreover, not enough is known about factors that may influence effects of disclosing emotions, including recipients' attitudes toward emotion-sharing, the sharer's gender, and whether one considers the disclosure to be similar to one's own experiences. We examined the impact of disclosing positive and negative emotion on ratings of closeness, warmth, competence, and leadership ability. Methods: 119 participants (95 female) in the United States were shown headshots of individuals who were introduced in the first person in written format. For half of the pictures, an autobiographical fact about the individual's past was disclosed. For the other half, an autobiographical fact and an associated emotion were disclosed. Results: We found that sharing both positive and negative emotions increased feelings of closeness above and beyond the effects of autobiographical sharing alone. Sharing positive emotions also increased ratings of warmth, competence, and leadership ability. Male and female sharers benefited equally from disclosing emotions and effects were largely robust to recipients' attitudes toward emotional expression. Having something in common with the disclosed fact or emotion further increased all ratings. Conclusion: These findings indicate that disclosing emotions may improve interpersonal interactions, with potential management applications in business.

2.
Gastroenterology ; 152(6): 1507-1520.e15, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28188746

RESUMO

BACKGROUND & AIMS: The ability of exocrine pancreatic cells to change the cellular phenotype is required for tissue regeneration upon injury, but also contributes to their malignant transformation and tumor progression. We investigated context-dependent signaling and transcription mechanisms that determine pancreatic cell fate decisions toward regeneration and malignancy. In particular, we studied the function and regulation of the inflammatory transcription factor nuclear factor of activated T cells 1 (NFATC1) in pancreatic cell plasticity and tissue adaptation. METHODS: We analyzed cell plasticity during pancreatic regeneration and transformation in mice with pancreas-specific expression of a constitutively active form of NFATC1, or depletion of enhancer of zeste 2 homologue 2 (EZH2), in the context of wild-type or constitutively activate Kras, respectively. Acute and chronic pancreatitis were induced by intraperitoneal injection of caerulein. EZH2-dependent regulation of NFATC1 expression was studied in mouse in human pancreatic tissue and cells by immunohistochemistry, immunoblotting, and quantitative reverse transcription polymerase chain reaction. We used genetic and pharmacologic approaches of EZH2 and NFATC1 inhibition to study the consequences of pathway disruption on pancreatic morphology and function. Epigenetic modifications on the NFATC1 gene were investigated by chromatin immunoprecipitation assays. RESULTS: NFATC1 was rapidly and transiently induced in early adaptation to acinar cell injury in human samples and in mice, where it promoted acinar cell transdifferentiation and blocked proliferation of metaplastic pancreatic cells. However, in late stages of regeneration, Nfatc1 was epigenetically silenced by EZH2-dependent histone methylation, to enable acinar cell redifferentiation and prevent organ atrophy and exocrine insufficiency. In contrast, oncogenic activation of KRAS signaling in pancreatic ductal adenocarcinoma cells reversed the EZH2-dependent effects on the NFATC1 gene and was required for EZH2-mediated transcriptional activation of NFATC1. CONCLUSIONS: In studies of human and mouse pancreatic cells and tissue, we identified context-specific epigenetic regulation of NFATc1 activity as an important mechanism of pancreatic cell plasticity. Inhibitors of EZH2 might therefore interfere with oncogenic activity of NFATC1 and be used in treatment of pancreatic ductal adenocarcinoma.


Assuntos
Carcinoma Ductal Pancreático/genética , Plasticidade Celular/genética , Transformação Celular Neoplásica/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação da Expressão Gênica , Fatores de Transcrição NFATC/genética , Neoplasias Pancreáticas/genética , Regeneração/genética , Células Acinares/fisiologia , Animais , Carcinoma Ductal Pancreático/química , Proliferação de Células/genética , Transdiferenciação Celular/genética , Ceruletídeo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Proteína Potenciadora do Homólogo 2 de Zeste/análise , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inativação Gênica , Histonas/metabolismo , Humanos , Metilação , Camundongos , Fatores de Transcrição NFATC/análise , Fatores de Transcrição NFATC/metabolismo , Pâncreas/fisiologia , Neoplasias Pancreáticas/química , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/fisiopatologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/genética , Transcrição Gênica
3.
Mol Cancer Ther ; 15(3): 491-502, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26823495

RESUMO

We aimed to investigate the mechanistic, functional, and therapeutic role of glycogen synthase kinase 3ß (GSK-3ß) in the regulation and activation of the proinflammatory oncogenic transcription factor nuclear factor of activated T cells (NFATc2) in pancreatic cancer. IHC, qPCR, immunoblotting, immunofluorescence microscopy, and proliferation assays were used to analyze mouse and human tissues and cell lines. Protein-protein interactions and promoter regulation were analyzed by coimmunoprecipitation, DNA pulldown, reporter, and ChIP assays. Preclinical assays were performed using a variety of pancreatic cancer cells lines, xenografts, and a genetically engineered mouse model (GEMM). GSK-3ß-dependent SP2 phosphorylation mediates NFATc2 protein stability in the nucleus of pancreatic cancer cells stimulating pancreatic cancer growth. In addition to protein stabilization, GSK-3ß also maintains NFATc2 activation through a distinct mechanism involving stabilization of NFATc2-STAT3 complexes independent of SP2 phosphorylation. For NFATc2-STAT3 complex formation, GSK-3ß-mediated phosphorylation of STAT3 at Y705 is required to stimulate euchromatin formation of NFAT target promoters, such as cyclin-dependent kinase-6, which promotes tumor growth. Finally, preclinical experiments suggest that targeting the NFATc2-STAT3-GSK-3ß module inhibits proliferation and tumor growth and interferes with inflammation-induced pancreatic cancer progression in Kras(G12D) mice. In conclusion, we describe a novel mechanism by which GSK-3ß fine-tunes NFATc2 and STAT3 transcriptional networks to integrate upstream signaling events that govern pancreatic cancer progression and growth. Furthermore, the therapeutic potential of GSK-3ß is demonstrated for the first time in a relevant Kras and inflammation-induced GEMM for pancreatic cancer.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Genes ras , Humanos , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Fatores de Transcrição NFATC/genética , Motivos de Nucleotídeos , Neoplasias Pancreáticas/genética , Fosforilação , Ligação Proteica , Estabilidade Proteica , Fator de Transcrição STAT3/metabolismo
4.
Stem Cells Int ; 2016: 5272498, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26697077

RESUMO

Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis. Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC) development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy. Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR) or induction of Sox9 expression, are required for tumor formation. Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation. We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling. Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9. Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.

5.
Gastroenterology ; 148(5): 1024-1034.e9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25623042

RESUMO

BACKGROUND & AIMS: Oncogenic mutations in KRAS contribute to the development of pancreatic ductal adenocarcinoma, but are not sufficient to initiate carcinogenesis. Secondary events, such as inflammation-induced signaling via the epidermal growth factor receptor (EGFR) and expression of the SOX9 gene, are required for tumor formation. Herein we sought to identify the mechanisms that link EGFR signaling with activation of SOX9 during acinar-ductal metaplasia, a transdifferentiation process that precedes pancreatic carcinogenesis. METHODS: We analyzed pancreatic tissues from Kras(G12D);pdx1-Cre and Kras(G12D);NFATc1(Δ/Δ);pdx1-Cre mice after intraperitoneal administration of caerulein, vs cyclosporin A or dimethyl sulfoxide (controls). Induction of EGFR signaling and its effects on the expression of Nuclear factor of activated T cells c1 (NFATc1) or SOX9 were investigated by quantitative reverse-transcription polymerase chain reaction, immunoblot, and immunohistochemical analyses of mouse and human tissues and acinar cell explants. Interactions between NFATc1 and partner proteins and effects on DNA binding or chromatin modifications were studied using co-immunoprecipitation and chromatin immunoprecipitation assays in acinar cell explants and mouse tissue. RESULTS: EGFR activation induced expression of NFATc1 in metaplastic areas from patients with chronic pancreatitis and in pancreatic tissue from Kras(G12D) mice. EGFR signaling also promoted formation of a complex between NFATc1 and C-JUN in dedifferentiating mouse acinar cells, leading to activation of Sox9 transcription and induction of acinar-ductal metaplasia. Pharmacologic inhibition of NFATc1 or disruption of the Nfatc1 gene inhibited EGFR-mediated induction of Sox9 transcription and blocked acinar-ductal transdifferentiation and pancreatic cancer initiation in mice. CONCLUSIONS: EGFR signaling induces expression of NFATc1 and Sox9, leading to acinar cell transdifferentiation and initiation of pancreatic cancer. Strategies designed to disrupt this pathway might be developed to prevent pancreatic cancer initiation in high-risk patients with chronic pancreatitis.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Transdiferenciação Celular , Receptores ErbB/metabolismo , Fatores de Transcrição NFATC/metabolismo , Pâncreas Exócrino/metabolismo , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/metabolismo , Lesões Pré-Cancerosas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Animais , Carcinoma Ductal Pancreático/induzido quimicamente , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ceruletídeo , Ciclosporina , Modelos Animais de Doenças , Receptores ErbB/genética , Regulação da Expressão Gênica , Humanos , Masculino , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fatores de Transcrição NFATC/deficiência , Fatores de Transcrição NFATC/genética , Pâncreas Exócrino/patologia , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição SOX9/genética , Técnicas de Cultura de Tecidos , Ativação Transcricional
6.
EMBO J ; 34(4): 517-30, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25586376

RESUMO

In adaptation to oncogenic signals, pancreatic ductal adenocarcinoma (PDAC) cells undergo epithelial-mesenchymal transition (EMT), a process combining tumor cell dedifferentiation with acquisition of stemness features. However, the mechanisms linking oncogene-induced signaling pathways with EMT and stemness remain largely elusive. Here, we uncover the inflammation-induced transcription factor NFATc1 as a central regulator of pancreatic cancer cell plasticity. In particular, we show that NFATc1 drives EMT reprogramming and maintains pancreatic cancer cells in a stem cell-like state through Sox2-dependent transcription of EMT and stemness factors. Intriguingly, NFATc1-Sox2 complex-mediated PDAC dedifferentiation and progression is opposed by antithetical p53-miR200c signaling, and inactivation of the tumor suppressor pathway is essential for tumor dedifferentiation and dissemination both in genetically engineered mouse models (GEMM) and human PDAC. Based on these findings, we propose the existence of a hierarchical signaling network regulating PDAC cell plasticity and suggest that the molecular decision between epithelial cell preservation and conversion into a dedifferentiated cancer stem cell-like phenotype depends on opposing levels of p53 and NFATc1 signaling activities.


Assuntos
MicroRNAs/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Fatores de Transcrição SOXB1/genética , Proteína Supressora de Tumor p53/genética
7.
Cancer Discov ; 4(6): 688-701, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24694735

RESUMO

UNLABELLED: Cancer-associated inflammation is a molecular key feature in pancreatic ductal adenocarcinoma. Oncogenic KRAS in conjunction with persistent inflammation is known to accelerate carcinogenesis, although the underlying mechanisms remain poorly understood. Here, we outline a novel pathway whereby the transcription factors NFATc1 and STAT3 cooperate in pancreatic epithelial cells to promote Kras(G12D)-driven carcinogenesis. NFATc1 activation is induced by inflammation and itself accelerates inflammation-induced carcinogenesis in Kras(G12D) mice, whereas genetic or pharmacologic ablation of NFATc1 attenuates this effect. Mechanistically, NFATc1 complexes with STAT3 for enhancer-promoter communications at jointly regulated genes involved in oncogenesis, for example, Cyclin, EGFR and WNT family members. The NFATc1-STAT3 cooperativity is operative in pancreatitis-mediated carcinogenesis as well as in established human pancreatic cancer. Together, these studies unravel new mechanisms of inflammatory-driven pancreatic carcinogenesis and suggest beneficial effects of chemopreventive strategies using drugs that are currently available for targeting these factors in clinical trials. SIGNIFICANCE: Our study points to the existence of an oncogenic NFATc1-STAT3 cooperativity that mechanistically links inflammation with pancreatic cancer initiation and progression. Because NFATc1-STAT3 nucleoprotein complexes control the expression of gene networks at the intersection of inflammation and cancer, our study has significant relevance for potentially managing pancreatic cancer and other inflammatory-driven malignancies.


Assuntos
Fatores de Transcrição NFATC/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Ceruletídeo , Regulação Neoplásica da Expressão Gênica , Camundongos Transgênicos , Fatores de Transcrição NFATC/genética , Neoplasias Pancreáticas/genética , Pancreatite/induzido quimicamente , Pancreatite/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator de Transcrição STAT3/genética
8.
Gastroenterology ; 142(2): 388-98.e1-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22079596

RESUMO

BACKGROUND & AIMS: Transcriptional silencing of the p15(INK4b) tumor suppressor pathway overcomes cellular protection against unrestrained proliferation in cancer. Here we show a novel pathway involving the oncogenic transcription factor nuclear factor of activated T cells (NFAT) c2 targeting a p15(INK4b)-mediated failsafe mechanism to promote pancreatic cancer tumor growth. METHODS: Immunohistochemistry, real-time polymerase chain reaction, immunoblotting, and immunofluorescence microscopy were used for expression studies. Cancer growth was assessed in vitro by [(3)H]thymidine incorporation, colony formation assays, and in vivo using xenograft tumor models. Protein-protein interactions, promoter regulation, and local histone modifications were analyzed by immunoprecipitation, DNA pull-down, reporter, and chromatin immunoprecipitation assays. RESULTS: Our study uncovered induction of NFATc2 in late-stage pancreatic intraepithelial neoplasia lesions with increased expression in tumor cell nuclei of advanced cancers. In the nucleus, NFATc2 targets the p15(INK4b) promoter for inducible heterochromatin formation and silencing. NFATc2 binding to its cognate promoter site induces stepwise recruitment of the histone methyltransferase Suv39H1, causes local H3K9 trimethylation, and allows docking of heterochromatin protein HP1γ to the repressor complex. Conversely, inactivation of NFATc2 disrupts this repressor complex assembly and local heterochromatin formation, resulting in restoration of p15(INK4b) expression and inhibition of pancreatic cancer growth in vitro and in vivo. CONCLUSIONS: Here we describe a novel mechanism for NFATc2-mediated gene regulation and identify a functional link among its repressor activity, the silencing of the suppressor pathway p15(INK4b), and its pancreatic cancer growth regulatory functions. Thus, we provide evidence that inactivation of oncogenic NFATc2 might be an attractive strategy in treatment of pancreatic cancer.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Heterocromatina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/genética , Feminino , Inativação Gênica , Humanos , Camundongos , Camundongos Nus , Fatores de Transcrição NFATC/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Distribuição Aleatória , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Gut ; 59(5): 630-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19880966

RESUMO

BACKGROUND AND AIMS: There are no chemopreventive strategies for pancreatic cancer or its precursor lesions, pancreatic intraepithelial neoplasia (PanINs). Recent evidence suggests that aspirin and inhibitors of angiotensin-I converting enzyme (ACE inhibitors) have potential chemopreventive properties. In this study, we used a genetically engineered mouse model of pancreatic cancer to evaluate the chemopreventive potential of these drugs. METHODS: Drug treatment was initiated at the age of 5 weeks. LsL-Kras(G12D); Pdx1-Cre or LsL-Kras(G12D); LsL-Trp53(R172H); Pdx1-Cre transgenic mice were randomly assigned to receive either mock treatment, aspirin, enalapril, or a combination of both. After 3 and 5 months, animals were killed. The effect of aspirin and enalapril was evaluated by histopathological analyses, immunostaining, and real-time PCR. RESULTS: After 3 and 5 months of treatment, enalapril and aspirin were able to significantly delay progression of mPanINs in LsL-Kras(G12D); Pdx1-Cre mice. Furthermore, development of invasive pancreatic cancer in LsL-Kras(G12D); LsL-Trp53(R172H); Pdx1-Cre transgenic mice was partially inhibited by enalapril and aspirin. Invasive pancreatic cancer was identified in 15 of 25 (60%) LsL-Kras(G12D); LsL-Trp53(R172H); Pdx1-Cre untreated control mice, but in only three of 17 (17.6%, p=0.01) mice treated with aspirin, in four of 17 (23.5%, p=0.03) in mice treated with enalapril alone, and in five of 16 (31.2%, p=0.11) mice treated with a combination of both drugs. Using real-time PCR we found a significant downregulation of the target genes VEGF and RelA demonstrating our ability to achieve effective pharmacological levels of aspirin and enalapril during pancreatic cancer formation in vivo. CONCLUSION: Using a transgenic mouse model that imitates human pancreatic cancer, this study provides first evidence that aspirin and enalapril are effective chemopreventive agents by delaying the progression of PanINs and partially inhibiting the formation of murine pancreatic cancer. This study together supports the hypothesis that aspirin and ACE inhibitors might be a valid chemopreventive strategy.


Assuntos
Anticarcinógenos/uso terapêutico , Aspirina/uso terapêutico , Carcinoma in Situ/prevenção & controle , Carcinoma Ductal Pancreático/prevenção & controle , Enalapril/uso terapêutico , Neoplasias Pancreáticas/prevenção & controle , Amilases/metabolismo , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , Invasividade Neoplásica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptor Tipo 1 de Angiotensina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA