Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Fish Shellfish Immunol ; 150: 109635, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754648

RESUMO

The present study explored the effects of different lipid sources on growth performance, lipid deposition, antioxidant capacity, inflammatory response and disease resistance of largemouth bass (Micropterus salmoides). Four isonitrogenous (crude protein 50.46 %) and isolipidic (crude lipid 11.12 %) diets were formulated to contain 7 % of different oil sources including fish oil (FO) (control), soybean oil (SO), linseed oil (LO) and coconut oil (CO). Largemouth bass with initial body weight of 36.0 ± 0.2 g were randomly distributed into 12 tanks, with 30 fish per tank and 3 tanks per treatment. The fish were fed with the experiment diets twice daily for 8 weeks. The results indicated that the weight gain of largemouth bass fed the FO diet was significantly higher than that of fish fed the LO and CO diets. The liver crude lipid content in FO group was significantly higher than other groups, while the highest liver triglyceride content was showed in SO group and the lowest was detected in LO group. At transcriptional level, expression of lipogenesis related genes (pparγ, srebp1, fas, acc, dgat1 and dgat2) in the SO and CO group were significantly higher than the FO group. However, the expression of lipolysis and fatty acids oxidation related genes (pparα, cpt1, and aco) in vegetable oils groups were significantly higher than the FO group. As to the antioxidant capacity, vegetable oils significantly reduced the malondialdehyde content of largemouth bass. Total antioxidant capacity in the SO and LO groups were significantly increased compared with the FO group. Catalase in the LO group was significantly increased compared with the FO group. Furthermore, the ER stress related genes, such as grp78, atf6α, atf6ß, chop and xbp1 were significantly enhanced in the vegetable oil groups compared with the FO group. The activity of serum lysozyme in vegetable oil groups were significantly higher than in FO group. Additionally, the relative expression of non-specific immune related genes, including tlr2, mapk11, mapk13, mapk14, rela, tgf-ß1, tnfα, 5lox, il-1ß and il10, were all significantly increased in SO and CO groups compared to the other groups. In conclusion, based on the indexes including growth performance, lipid deposition, antioxidant capacity and inflammatory response, SO and LO could be alternative oil sources for largemouth bass.

2.
Aquac Nutr ; 2024: 9944159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283889

RESUMO

The present study explored the effects of inositol on growth performance, body composition, antioxidant performance, and lipid metabolism of largemouth bass (Micropterus salmoides). Six isonitrogenous and isolipidic diets containing 0 mg/kg (G1, control), 125 mg/kg (G2), 250 mg/kg (G3), 375 mg/kg (G4), 500 mg/kg (G5), and 625 mg/kg (G6) inositol were prepared and fed to cultured fish (initial weight: 110 ± 1 g) for 8 weeks in recirculating the aquaculture systems. The results indicated that compared with G1 group, the weight gain rate (WGR), specific growth rate (SGR), and feed efficiency rate (FER) in the G3 group were significantly higher. The crude lipid content of the whole fish and the liver of cultured fish was significantly reduced with increasing dietary inositol inclusion. However, no significant effects on moisture, crude protein, and ash contents of fish were observed among the different groups. Dietary inositol supplementation significantly increased muscular crude protein. However, muscular total lipid contents were decreased when the inclusion level was higher than 250 mg/kg (G3-G6 groups). As dietary inositol supplemental level increased, serum triglyceride (TG), and cholesterol (TC) contents showed an increasing trend and reached the maximum value in the G3 group. Additionally, serum low-density lipoprotein cholesterol (LDL-C) in G2, G3, G4, and G5 groups was significantly upregulated by increasing inositol. While, there was no significant change in serum high-density lipoprotein cholesterol (HDL-C) among the treatments. Inositol inclusion also significantly reduced the serum alkaline phosphatase (AKP), glutamic-pyruvic transaminase (ALT), and glutamic-oxaloacetic transaminase (AST) activities as well as serum malondialdehyde (MDA) content but significantly increased serum catalase (CAT), superoxide dismutase (SOD) activities, and total antioxidant capacity (T-AOC). Compared with the control group, the activities of hepatic total lipase (TL) and lipoprotein lipase (LPL) were significantly elevated in the G3, G4, and G5 groups. Above all, dietary inositol supplementation could improve growth performance and antioxidant capacity, and reduce the liver fat content of largemouth bass, and the optimal supplementation level of inositol in feed is estimated to be 250.31-267.27 mg/kg.

3.
Br J Nutr ; 131(8): 1308-1325, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38073302

RESUMO

A 60-d feeding trial was conducted to explore the potential regulatory effects of dietary Clostridium butyricum cultures (CBC) supplementation in high-carbohydrate diet (HCD) on carbohydrate utilisation, antioxidant capacity and intestinal microbiota of largemouth bass. Triplicate groups of largemouth bass (average weight 35·03 ± 0·04 g), with a destiny of twenty-eight individuals per tank, were fed low-carbohydrate diet and HCD supplemented with different concentration of CBC (0 %, 0·25 %, 0·50 % and 1·00 %). The results showed that dietary CBC inclusion alleviated the hepatic glycogen accumulation induced by HCD intake. Additionally, the expression of hepatic ampkα1 and insulin signaling pathway-related genes (ira, irb, irs, p13kr1 and akt1) increased linearly with dietary CBC inclusion, which might be associated with the activation of glycolysis-related genes (gk, pfkl and pk). Meanwhile, the expression of intestinal SCFA transport-related genes (ffar3 and mct1) was significantly increased with dietary CBC inclusion. In addition, the hepatic antioxidant capacity was improved with dietary CBC supplementation, as evidenced by linear decrease in malondialdehyde concentration and expression of keap1, and linear increase in antioxidant enzyme activities (total antioxidative capacity, total superoxide dismutase and catalase) and expression of antioxidant enzyme-related genes (nrf2, sod1, sod2 and cat). The analysis of bacterial 16S rRNA V3-4 region indicated that dietary CBC inclusion significantly reduced the enrichment of Firmicutes and potential pathogenic bacteria genus Mycoplasma but significantly elevated the relative abundance of Fusobacteria and Cetobacterium. In summary, dietary CBC inclusion improved carbohydrate utilization, antioxidant capacity and intestinal microbiota of largemouth bass fed HCD.


Assuntos
Bass , Clostridium butyricum , Humanos , Animais , Antioxidantes/metabolismo , Bass/metabolismo , Clostridium butyricum/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , RNA Ribossômico 16S/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Dieta/veterinária , Carboidratos
4.
Fish Physiol Biochem ; 50(2): 785-796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108936

RESUMO

To elucidate the underlying mechanism of the energy metabolism in largemouth bass (Micropterus salmoides), cultured fish (initial body weight: 77.57 ± 0.75 g) in the present study were starved for 0 h, 12 h, 24 h, 48 h, 96 h and 192 h, respectively. The proximate composition analysis showed that short-term starvation induced a significant up-regulation in crude protein proportion in hepatic of cultured fish (P < 0.05). However, short-term starvation significantly decreased the hepatosomatic index and the viscerosomatic index of cultured fish (P < 0.05). The exact hepatic glycogen content in the group starved for 92 h presented remarkable decrease (P < 0.05). Meanwhile, compared with the weight change of lipid and protein (mg) in hepatic (y = 0.0007x2 - 0.2827x + 49.402; y = 0.0013x2 - 0.5666x + 165.31), the decreasing trend of weight in glycogen (mg) was more pronounced (y = 0.0032x2 - 1.817x + 326.52), which suggested the preferential utilization of hepatic glycogen as energy substrates under short-term starvation. Gene expression analysis revealed that the starvation down-regulated the expression of insulin-like growth factor 1 and genes of TOR pathway, such as target of rapamycin (tor) and ribosomal protein S6 (s6) (P < 0.05). In addition, the starvation significantly enhanced expression of lipolysis-related genes, including hormone-sensitive lipase (hsl) and carnitine palmitoyl transferase I (cpt1), but down-regulated lipogenesis as indicated by the inhibited expression of fatty acids synthase (fas), acetyl-CoA carboxylase 1 (acc1) and acetyl-CoA carboxylase 2 (acc2) (P < 0.05). Starvation of 24 h up-regulated the expression of glycolysis genes, glucokinase (gk), phosphofructokinase liver type (pfkl) and pyruvate kinase (pk), and then their expression returned to the normal level. Meanwhile, the expression of gluconeogenesis genes, such as glucose-6-phosphatase catalytic subunit (g6pc), fructose-1,6-bisphosphatase-1 (fbp1) and phosphoenolpyruvate carboxy kinase (pepck), was significantly inhibited with the short-term starvation (P < 0.05). In conclusion, short-term starvation induced an overall decline in growth performance, but it could deplete the hepatic glycogen accumulation and mobilize glycogen for energy effectively.


Assuntos
Bass , Animais , Glicogênio Hepático/metabolismo , Acetil-CoA Carboxilase/metabolismo , Lipogênese , Glicogênio/metabolismo , Proteínas/metabolismo , Fígado/metabolismo
5.
Front Immunol ; 13: 913024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928824

RESUMO

The present study was conducted to investigate the effects of dietary inclusion of protein hydrolysates on growth performance, digestive enzyme activities, protein metabolism, and intestinal health in larval largemouth bass (Micropterus salmoides). The experimental feeding trial presented in this study was based on five isonitrogenous and isolipidic diets formulated with graded inclusion levels of protein hydrolysates, and it showed that protein hydrolysates improved growth performance, reduced larval deformity rate, and increased the activity of digestive enzymes, including pepsin and trypsin. Gene expression results revealed that the supplementation of protein hydrolysates upregulated the expression of intestinal amino acid transporters LAT2 and peptide transporter 2 (PepT2), as well as the amino acid transporters LAT1 in muscle. Dietary provision of protein hydrolysates activated the target of rapamycin (TOR) pathway including the up-regulation of TOR and AKT1, and down-regulation of 4EBP1. Additionally, the expression of genes involved in the amino acids response (AAR) pathway, ATF4 and REDD1, were inhibited. Protein hydrolysates inhibited the transcription of some pro-inflammatory cytokines, including IL-8 and 5-LOX, but promoted the expression of anti-inflammatory cytokines TGF-ß and IL-10. The 16S rRNA analysis, using V3-V4 region, indicated that dietary protein hydrolysates supplementation reduced the diversity of the intestine microbial community, increased the enrichment of Plesiomonas and reduced the enrichment of Staphylococcus at the genus level. In summary, protein hydrolysates have been shown to be an active and useful supplement to positively complement other protein sources in the diets for largemouth bass larvae, and this study provided novel insights on the beneficial roles and possible mechanisms of action of dietary protein hydrolysates in improving the overall performance of fish larvae.


Assuntos
Bass , Ração Animal , Animais , Bass/genética , Citocinas/metabolismo , Microbioma Gastrointestinal , Intestinos , Larva , Hidrolisados de Proteína/metabolismo , RNA Ribossômico 16S
6.
Fish Shellfish Immunol ; 127: 804-812, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843521

RESUMO

An 8-week feeding trial was conducted to evaluate the effects of dietary supplementation of compound probiotic cultures (CPC; Bacillus subtilis, Lactobacillus plantarum and Saccharomyces cerevisiae) on the growth performance, antioxidant capacity, non-specific immunity and disease resistance of juvenile largemouth bass. Triplicate groups of largemouth bass (average weight 42.05 ± 0.02 g), with a destiny of 30 individuals per tank, were fed diets supplemented with different concentration of compound probiotic cultures (CPC) (0%, CPC (0.0); 0.5%, CPC (0.5); 1.0%, CPC (1.0); 2.0%, CPC (2.0)). After the feeding trial, tissue samples of largemouth bass were collected and the challenge test with Aeromonas hydrophila was performed. Results indicated that the CPC supplementation produced no significant difference on the growth performance, feed utilization and body composition of largemouth bass, while significantly increased the cumulative survival rate in the Aeromonas hydrophila challenge test. Meanwhile, the inclusion of CPC elevated the hepatic antioxidant capacity, and the highest activity of antioxidant enzymes, including T-AOC, CAT, GPx and T-SOD, was observed in the CPC (2.0) group. Meanwhile, the transcription of Nrf2/keap1 and antioxidant related genes, including CAT, GPx, GST, SOD1 and SOD2, was significantly elevated with the inclusion of CPC. In addition, the inclusion of CPC improved the non-specific immunity of largemouth bass. The activity of serum lysozyme was significantly elevated in the CPC (2.0) group, while the transcription of RelA and pro-inflammatory factors, including TNF-α and IL-1ß, was inhibited with the inclusion of CPC. Meanwhile, related genes potentially linked to RelA, including TLR2 and p38 MAPK, were detected that their relative expression was significantly inhibited with the inclusion of CPC. The current findings indicated that the inclusion of 2% CPC improved the antioxidant capacity, non-specific immunity and disease resistance of juvenile largemouth bass, and suggested that 2% CPC as a functional additive could be applied to the diet of juvenile largemouth bass in aquaculture practice.


Assuntos
Bass , Probióticos , Aeromonas hydrophila , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Dieta/veterinária , Resistência à Doença , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Probióticos/farmacologia
7.
Sci Total Environ ; 841: 156784, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724795

RESUMO

The unreasonably anthropogenic activities make lithium a widespread pollutant in aquatic environment, and this metallic element can enter the food chain to influence humans. Therefore, the study was designed to explore the influence of dietary lithium supplementation on body weight, lipid deposition, antioxidant capacity and inflammation response of largemouth bass. Multivariate statistical analysis confirmed the toxicological impacts of excessive lithium on largemouth bass. Specifically, excessive dietary lithium (≥87.08 mg/kg) significantly elevated weight gain and feed intake of largemouth bass. Meanwhile, overload lithium inclusion aggravated the accumulation of hepatic lipid and serum lithium. Gene expression results showed that lithium inclusion, especially overload lithium, promoted the transcription of lipogenesis related genes, PPARγ, ACC and FAS, inhibited the expression of fatty acid oxidation related genes, PPARα and ACO, and lipolysis related genes, HSL and MGL. Meanwhile, high lithium inclusion caused the oxidative stress, which was partly through the inhibition of Nrf2/Keap1 pathway. Moreover, dietary lithium inclusion significantly depressed the activity of hepatic lysozyme, and promoted the transcription of proinflammation factors, TNF-α, 5-LOX, IL-1ß and IL-8, which was suggested to be regulated by the p38 MAPK pathway. Our findings suggested that overload lithium resulted in increased body weight, hepatic lipid deposition, oxidative stress and inflammation response. The results obtained here provided novel insights on the toxicological impacts of excessive lithium on aquatic animals.


Assuntos
Bass , Animais , Antioxidantes/metabolismo , Bass/fisiologia , Peso Corporal , Inflamação/induzido quimicamente , Inflamação/veterinária , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipídeos , Lítio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo
8.
Br J Nutr ; 127(2): 165-176, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33583445

RESUMO

Excessive hepatic glycogen accumulation commonly impairs hepatocytes function and further produces negative effects on growth and health status of carnivorous fish. A 9-week feeding trial was conducted to explore the potential regulation of resveratrol (RSV) on high-carbohydrate-induced glycogen deposition and immune response of largemouth bass. Results showed that high dietary carbohydrate (10 % inclusion of starch) led to hepatic glycogen accumulation and post-prandial hyperglycemia compared with the diet with 5 % starch, which was both alleviated with the inclusion of RSV. The use of RSV promoted the expression of sirtuin 1, which was down-regulated by high dietary carbohydrate. Meanwhile, RSV inclusion promoted the expression of genes involved in insulin pathway and glycolysis and inhibited the expression of gluconeogenesis-related genes. Additionally, high dietary carbohydrate significantly reduced lysozyme content but increased complement C4 content, which were both reversed with RSV supplementation. Meanwhile, RSV inclusion inhibited the expression of pro-inflammatory cytokines but promoted anti-inflammatory cytokines expression, compared with the high carbohydrate treatment. In conclusion, RSV inclusion was beneficial in alleviating high-dietary-carbohydrate-induced glycogen accumulation and immune response in largemouth bass.


Assuntos
Bass , Animais , Carboidratos da Dieta/metabolismo , Carboidratos da Dieta/farmacologia , Glicogênio/metabolismo , Imunidade , Resveratrol/farmacologia
9.
Front Physiol ; 12: 726877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646155

RESUMO

Sirtuin 1 (SIRT1) of largemouth bass (Micropterus salmoides) was cloned and characterized in the present study and the influence of SIRT1 activation induced by resveratrol inclusion on the expression of genes related to lipid metabolism and antioxidation was also investigated. The SIRT1 of largemouth bass, with full-length cDNA sequence of 3395bp encoding 695 amino acids, was mainly expressed in gonad, heart and liver. The analysis of multiple sequence alignment revealed that, in accordance with other species, SIRT1 of largemouth bass contained highly conserved substrate-binding site and NAD+ binding site. The result of subcellular localization displayed that SIRT1 of largemouth bass was mainly localized in the nucleus. The inclusion of 1.0 and 2.5‰ dietary RSV, a natural SIRT1 activator, significantly elevated the SIRT1 protein expression. Meanwhile, the phosphorylation of AKT1 and FoxO1 followed similar pattern with that of SIRT1, indicating the activation of insulin pathway, which may result in the inhibition of lipogenesis and activation of lipolysis, and reduced hepatic triglycerides content. Additionally, the activation of SIRT1 induced by dietary RSV elevated the antioxidant capacity at both transcriptional level and enzymatic level, which was probably mediated by the transcription factor Nrf2. In above, SIRT1 was suggested to be involved in improving antioxidant capacity and alleviating hepatic lipid deposition in largemouth bass.

10.
Front Immunol ; 12: 827946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087540

RESUMO

While the beneficial roles of dietary phospholipids on health status and overall performances of fish larvae have been well demonstrated, the underlying mechanisms remain unclear. To address this gap, the present study was conducted to investigate the effects of dietary phospholipids on growth performance, intestinal development, immune response and microbiota of larval largemouth bass (Micropterus salmoides). Five isonitrogenous and isolipidic micro-diets were formulated to contain graded inclusion levels of phospholipids (1.69, 3.11, 5.23, 7.43 and 9.29%). Results showed that the supplementation of dietary phospholipids linearly improved the growth performance of largemouth bass larvae. The inclusion of dietary phospholipids increased the activity of digestive enzymes, such as lipase, trypsin and alkaline phosphatase, and promoted the expression of tight junction proteins including ZO-1, claudin-4 and claudin-5. Additionally, dietary phospholipids inclusion alleviated the accumulation of intestinal triacylglycerols, and further elevated the activity of lysozyme. Dietary phospholipids inhibited the transcription of some pro-inflammatory cytokines, including il-1ß, and tnf-α, but promoted the expression of anti-inflammatory cytokines tgf-ß, with these modifications being suggested to be mediated by the p38MAPK/Nf-κB pathway. The analysis of bacterial 16S rRNA V3-4 region indicated that the intestinal microbiota profile was significantly altered at the genus level with dietary phospholipids inclusion, including a decreased richness of pathogenic bacteria genera Klebsiella in larval intestine. In summary, it was showed that largemouth bass larvae have a specific requirement for dietary phospholipids, and this study provided novel insights on how dietary phospholipids supplementation contributes to improving the growth performance, digestive tract development and intestinal health.


Assuntos
Bass/fisiologia , Suplementos Nutricionais , Digestão , Enzimas/metabolismo , Intestinos/fisiologia , Fosfolipídeos/metabolismo , Animais , Biologia Computacional/métodos , Microbioma Gastrointestinal , Larva , Fosfolipídeos/administração & dosagem
11.
Br J Nutr ; 124(11): 1145-1155, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32624026

RESUMO

Aquafeeds for carnivorous species face a nutritional-technological conundrum: containing sufficient starch to meet specific manufacturing requirements for binding, extrusion and expansion, but ideally containing as little starch as possible owing to their limited ability to utilise carbohydrates. The present study evaluated the effects of dietary starch with different amylose to amylopectin ratios and resistant starch contents on growth performance, hepatic glycogen accumulation and glucose metabolism of an important cultured carnivorous finfish, largemouth bass (Micropterus salmoides). A common starch source (α-cassava starch (CS)) was tested as is or after being enzymatically de-branched at three different inclusion levels in diets for largemouth bass. Results showed that the increased dietary starch levels compromised performance and high dietary α-CS content led to obvious liver damage. However, the growth performances of fish fed the diets with de-branched starch (DS) were improved, and no manifest liver damages were observed even at the higher inclusion level. The increasing dietary starch contents significantly increased hepatic glycogen accumulation, but not when DS was used. High dietary starch content, without regard to starch sources, had no effect on the expression of glucose metabolism-related genes, except for down-regulation of insulin receptor expression. However, the use of dietary DS promoted the expression of genes involved in the insulin pathway and glycolysis. In conclusion, this study showed that the use of starch sources with a high amylose to amylopectin ratio and resistant starch in the feed for cultured carnivorous finfish could alleviate the hepatic glycogen deposition through regulating the insulin pathway and glycolysis.


Assuntos
Amilopectina/farmacologia , Amilose/farmacologia , Ração Animal/análise , Carboidratos da Dieta/farmacologia , Amido Resistente/farmacologia , Animais , Bass/crescimento & desenvolvimento , Glicogênio/metabolismo , Glicólise/efeitos dos fármacos , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Fish Shellfish Immunol ; 100: 109-116, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32156583

RESUMO

The present study was conducted to explore the influence of dietary carbohydrate on antioxidant capacity and non-specific immunity of hybrid grouper, which would contribute to determine the tolerable dietary carbohydrate content. Seven diets with grade levels of carbohydrate (5.27, 8.95, 11.49, 14.37, 17.78, 20.82 and 23.65%) were fed to triplicate groups of fish for 10 weeks. Results showed that the inclusion of carbohydrate above 11.49% produced significant increased content of hydrogen peroxide (H2O2) in liver and malondialdehyde (MDA) in both serum and liver. The specific activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (Gpx) and total antioxidative capacity (T-AOC) were significantly elevated with the increase of dietary carbohydrate from 8.95 to 23.65%, which may be associated with the reduced hepatic soluble protein content. However, opposite variation was observed in the expression of antioxidant related genes (SOD1 and Gpx), which was partly caused by the activation of NF-E2-related factor 2 (Nrf2) and inhibition of Kelch-like-ECH-associated protein 1 (Keap1) at the transcriptional level. The immunoglobulin M (lgM) content and activity of lysozyme and CCP in serum significantly depressed when dietary carbohydrate was above 11.49%. The expression of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-8) was significantly increased with the increase of dietary carbohydrate from 5.27 to 8.95% and thereafter significantly reduced, which was consistent with the changed expression of toll-like receptor 2 (TLR2) and nuclear factor κΒ (NF-κΒ). In above, high dietary carbohydrate significantly impaired the antioxidant capacity and reduced the non-specific immunity of hybrid grouper, and the tolerable dietary carbohydrate content should not exceed 11.49%.


Assuntos
Bass/imunologia , Carboidratos da Dieta/administração & dosagem , Proteínas de Peixes/imunologia , Expressão Gênica , Ração Animal , Animais , Antioxidantes/metabolismo , Bass/genética , Carnivoridade , Quimera/genética , Quimera/imunologia , Citocinas/imunologia , Suplementos Nutricionais , Feminino , Proteínas de Peixes/genética , Imunidade Inata , Masculino
13.
Fish Physiol Biochem ; 44(4): 1185-1196, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29790091

RESUMO

In the present study, the hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂), a typical carnivorous fish, was chosen as a model to investigate the regulation of glycogen metabolism owning to its characteristic of glucose intolerance. The variation of plasma glucose concentration, glycogen content, and expressions of glycogen metabolism-related genes under acute hyperglycemia stress were measured. Following glucose administration, plasma glucose concentration increased immediately, and the glucose level remained elevated for at least 12 h. The prolonged glucose clearance and hyperglycemia revealed glucose intolerance of this fish species. Meanwhile, the glycogen content in both liver and muscle changed significantly during the clearance of plasma glucose. However, the peak value of hepatic glycogen (1 and 12 h post injection) appeared much earlier than muscle (3 and 24 h post injection). To investigate the regulation of glycogen metabolism from molecular aspect, the complete coding sequence (CDS) of glycogen synthase (GS) and glycogen phosphorylase (GP) in both liver and muscle types were obtained, encoding a polypeptide of 704, 711, 853, and 842 amino acid residues, respectively. The results of gene expression analysis revealed that the expression of liver type and muscle type GS was significantly higher than other time points at 12 and 24 h post glucose injection, respectively. Meanwhile, the highest expressions of GP in both liver and muscle types occurred at 24 h post glucose injection. The response of GS and GP to glucose load may account for the variation of glycogen content at the transcriptional level to some extent.


Assuntos
Bass , Glicemia/análise , Doenças dos Peixes/fisiopatologia , Glicogênio Sintase/metabolismo , Glicogênio/análise , Hiperglicemia/veterinária , Fosforilases/metabolismo , Animais , Hiperglicemia/fisiopatologia , Estresse Fisiológico
14.
Gen Comp Endocrinol ; 179(1): 121-7, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22906421

RESUMO

Utilizing the tissue samples and growth data collected from our two preceding researches in largemouth bass (LMB), we have investigated effects of dietary arginine (Arg) levels and carbohydrate-to-lipid (CHO/LIP) ratios on the GH, IGF-I and insulin expression in related tissues to find possible relationships between the nutrient intake, growth performance and transcript level. Hepatic IGF-I and pituitary GH mRNA levels were significantly up-regulated by lower dietary Arg levels from 1.94% to 3.01% and by higher levels from 2.76% to 3.01%, respectively, while Brockmann body (BB)-containing tissue insulin mRNA expression was not affected. Dietary CHO/LIP ratios ranging from 0.32 to 5.17 (w/w) affected pituitary GH, liver IGF-I and BB-containing tissue insulin mRNA expression in a ratio-specific pattern. The lower ratios from 0.32 to 2.36 significantly up-regulated GH and insulin transcript levels, but significantly down-regulated IGF-I transcript levels; the higher ratios did no longer exert any further effects on them. Meanwhile, two strong positive correlations (r=0.892, r=0.885) between hepatic IGF-I transcript levels and specific growth rates of tested fish were observed with varying dietary Arg levels and CHO/LIP ratios, respectively. These findings indicate that in LMB dietary Arg levels and CHO/LIP ratios regulate differentially the endocrine system of GH, IGF-I and insulin at transcription level; this system, in turn, plays a fundamental role in the regulation of the nutrient metabolism and somatic growth; and that hepatic IGF-I mRNA abundance should be a more reliable index to assess growth and nutritional fitness than the others, at least in LMB.


Assuntos
Arginina/metabolismo , Bass/metabolismo , Metabolismo dos Carboidratos , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética , Insulina/genética , Metabolismo dos Lipídeos , Animais , Bass/genética , Bass/crescimento & desenvolvimento , Dieta , Hormônio do Crescimento/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA