RESUMO
Significant variations have been observed in viral copies generated during SARS-CoV-2 infections. However, the factors that impact viral copies and infection dynamics are not fully understood, and may be inherently dependent upon different viral and host factors. Here, we conducted virus whole genome sequencing and measured viral copies using RT-qPCR from 9,902 SARS-CoV-2 infections over a 2-year period to examine the impact of virus genetic variation on changes in viral copies adjusted for host age and vaccination status. Using a genome-wide association study (GWAS) approach, we identified multiple single-nucleotide polymorphisms (SNPs) corresponding to amino acid changes in the SARS-CoV-2 genome associated with variations in viral copies. We further applied a marginal epistasis test to detect interactions among SNPs and identified multiple pairs of substitutions located in the spike gene that have non-linear effects on viral copies. We also analyzed the temporal patterns and found that SNPs associated with increased viral copies were predominantly observed in Delta and Omicron BA.2/BA.4/BA.5/XBB infections, whereas those associated with decreased viral copies were only observed in infections with Omicron BA.1 variants. Our work showcases how GWAS can be a useful tool for probing phenotypes related to SNPs in viral genomes that are worth further exploration. We argue that this approach can be used more broadly across pathogens to characterize emerging variants and monitor therapeutic interventions.
Assuntos
COVID-19 , Genoma Viral , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Polimorfismo de Nucleotídeo Único/genética , Humanos , SARS-CoV-2/genética , Estudo de Associação Genômica Ampla/métodos , COVID-19/genética , COVID-19/virologia , Genoma Viral/genética , Glicoproteína da Espícula de Coronavírus/genética , Pessoa de Meia-Idade , Adulto , Masculino , Feminino , Carga Viral/genética , Idoso , Sequenciamento Completo do Genoma/métodosRESUMO
Diverse mammalian species display susceptibility to and infection with SARS-CoV-2. Potential SARS-CoV-2 spillback into rodents is understudied despite their host role for numerous zoonoses and human proximity. We assessed exposure and infection among white-footed mice (Peromyscus leucopus) in Connecticut, USA. We observed 1% (6/540) wild-type neutralizing antibody seroprevalence among 2020-2022 residential mice with no cross-neutralization of variants. We detected no SARS-CoV-2 infections via RT-qPCR, but identified non-SARS-CoV-2 betacoronavirus infections via pan-coronavirus PCR among 1% (5/468) of residential mice. Sequencing revealed two divergent betacoronaviruses, preliminarily named Peromyscus coronavirus-1 and -2. Both belong to the Betacoronavirus 1 species and are ~90% identical to the closest known relative, Porcine hemagglutinating encephalomyelitis virus. Low SARS-CoV-2 seroprevalence suggests white-footed mice may not be sufficiently susceptible or exposed to SARS-CoV-2 to present a long-term human health risk. However, the discovery of divergent, non-SARS-CoV-2 betacoronaviruses expands the diversity of known rodent coronaviruses and further investigation is required to understand their transmission extent.
RESUMO
The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.
Assuntos
COVID-19 , Mpox , Infecção por Zika virus , Zika virus , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2/genética , GenômicaRESUMO
The emergence of the SARS-CoV-2 Omicron sublineages resulted in increased transmission rates and reduced protection from vaccines. To counteract these effects, multiple booster strategies were used in different countries, although data comparing their efficiency in improving protective immunity remain sparse, especially among vulnerable populations, including older adults. The inactivated CoronaVac vaccine was among the most widely distributed vaccine worldwide and was essential in the early control of SARS-CoV-2-related hospitalizations and deaths. However, it is not well understood whether homologous versus heterologous booster doses in those fully vaccinated with CoronaVac induce distinct humoral responses or whether these responses vary across age groups. We analyzed plasma antibody responses from CoronaVac-vaccinated younger or older individuals who received a homologous CoronaVac or heterologous BNT162b2 or ChAdOx1 booster vaccine. All three evaluated boosters resulted in increased virus-specific IgG titers 28 days after the booster dose. However, we found that both IgG titers against SARS-CoV-2 Spike or RBD and neutralization titers against Omicron sublineages were substantially reduced in participants who received homologous CoronaVac compared with the heterologous BNT162b2 or ChAdOx1 booster. This effect was specifically prominent in recipients >50 years of age. In this group, the CoronaVac booster induced low virus-specific IgG titers and failed to elevate neutralization titers against any Omicron sublineage. Our results point to the notable inefficiency of CoronaVac immunization and boosting in mounting protective antiviral humoral immunity, particularly among older adults, during the Omicron wave. These observations also point to benefits of heterologous regimens in high-risk populations fully vaccinated with CoronaVac.
Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Idoso , Vacina BNT162 , SARS-CoV-2 , Imunoglobulina G , Anticorpos AntiviraisRESUMO
The 2022 multi-country monkeypox (mpox) outbreak concurrent with the ongoing COVID-19 pandemic has further highlighted the need for genomic surveillance and rapid pathogen whole genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for SARS-CoV-2. Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical samples that tested presumptive positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR cycle threshold below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.