Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 1107, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384835

RESUMO

The goat, an early domesticated ruminant, is a reliable source of cashmere, meat and milk in global agricultural production. Despite this, the genome of cashmere-rich goats has yet to be characterized. Here, we assembled the nearly complete genome of a cashmere goat from a highly economically valuable Inner Mongolian Cashmere buck, utilizing a combination of PacBio HiFi, ONT ultra-long reads, and Hi-C technologies. The size of this genome is 2.76 Gb, with a contig N50 of 95.22 Mb. All assembled sequences were anchored onto 29 autosomes and both sex chromosomes, with only two gaps present on the X chromosome. We identified 1,333.29 Mb (48.26%) of repetitive sequences and predicted 22,480 protein-coding genes. Assembly quality assessment of the genome demonstrated that our assembled cashmere goat genome surpasses the continuity, completeness, and accuracy of other published goat genomes. Taken together, we provided the first cashmere goat assembly, bridging the gap in the genome of important economic breeds of domestic goats, and providing a valuable reference resource for goat genetics and genome research.


Assuntos
Genoma , Cabras , Cabras/genética , Animais
2.
BMC Genomics ; 25(1): 349, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589806

RESUMO

The fleece traits are important economic traits of goats. With the reduction of sequencing and genotyping cost and the improvement of related technologies, genomic selection for goats has become possible. The research collect pedigree, phenotype and genotype information of 2299 Inner Mongolia Cashmere goats (IMCGs) individuals. We estimate fixed effects, and compare the estimates of variance components, heritability and genomic predictive ability of fleece traits in IMCGs when using the pedigree based Best Linear Unbiased Prediction (ABLUP), Genomic BLUP (GBLUP) or single-step GBLUP (ssGBLUP). The fleece traits considered are cashmere production (CP), cashmere diameter (CD), cashmere length (CL) and fiber length (FL). It was found that year of production, sex, herd and individual ages had highly significant effects on the four fleece traits (P < 0.01). All of these factors should be considered when the genetic parameters of fleece traits in IMCGs are evaluated. The heritabilities of FL, CL, CP and CD with ABLUP, GBLUP and ssGBLUP methods were 0.26 ~ 0.31, 0.05 ~ 0.08, 0.15 ~ 0.20 and 0.22 ~ 0.28, respectively. Therefore, it can be inferred that the genetic progress of CL is relatively slow. The predictive ability of fleece traits in IMCGs with GBLUP (56.18% to 69.06%) and ssGBLUP methods (66.82% to 73.70%) was significantly higher than that of ABLUP (36.73% to 41.25%). For the ssGBLUP method is significantly (29% ~ 33%) higher than that with ABLUP, and which is slightly (4% ~ 14%) higher than that of GBLUP. The ssGBLUP will be as an superiors method for using genomic selection of fleece traits in Inner Mongolia Cashmere goats.


Assuntos
Genoma , Cabras , Humanos , Animais , Cabras/genética , Genômica/métodos , Fenótipo , Genótipo , Modelos Genéticos
3.
J Anim Sci ; 100(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056739

RESUMO

There is genetic diversity of hair types in the Inner Mongolia cashmere goat population. Previous studies have found that fibroblast growth factor 21 (FGF21) and PI3K-AKT signal pathways may be related to different hair types in Inner Mongolia cashmere goats. Therefore, the purpose of this study was to explore the effects of the PI3K-AKT signal pathway on different hair types, the expression of mRNA and protein expression sites of FGF21 in the hair follicles of cashmere goats with different hair types, so as to lay a foundation for understanding the molecular mechanism of different hair types and the role of skin hair follicle development. In this experiment, the skin tissues of long hair type (LHG) and short hair type (SHG) of Inner Mongolia cashmere goat were collected in three key periods of secondary hair follicle growth, namely, anagen (September), catagen (December), and telogen (March). The relative expression of FGF21 and PI3K-AKT signal pathway candidate gene mRNA in different periods and different hair types was detected by real-time fluorescence quantitative technique (qRT-PCR), and the expression site of FGF21 protein was located by immunohistochemical technique. Through qRT-PCR, it was found that the relative expression of FGF21, FGFR1, AKT3, BRCA1, PKN3, SPP1, and GNG4 was significantly different between LHG and SHG. The expression of FGF21 in the skin of LHG was significantly higher than that of SHG in the three periods. Through immunohistochemical test, it was found that FGF21 protein was mainly expressed in primary hair follicle connective tissue sheath, primary hair follicle outer root sheath, secondary hair follicle outer root sheath, and sebaceous glands. It was also found that the expression of LHG skin tissue in the outer root sheath of primary hair follicles was higher than that of SHG in three periods. In summary, it is suggested that the PI3K-AKT signal pathway may play an important role in the formation of different hair types in Inner Mongolia cashmere goats.


There is genetic diversity of hair types in Inner Mongolia cashmere goat population. The purpose of this study was to explore the effects of the PI3K-AKT signal pathway on different hair types, the expression of mRNA and protein expression sites of FGF21 in the hair follicles of cashmere goats with different hair types, so as to lay a foundation for understanding the molecular mechanism of different hair types. It was found that the relative expression of FGF21, FGFR1, AKT3, BRCA1, PKN3, SPP1, and GNG4 was significantly different between LHG and SHG. It was found that FGF21 protein was mainly expressed in primary hair follicle connective tissue sheath, primary hair follicle outer root sheath, secondary hair follicle outer root sheath, and sebaceous glands. It was also found that the expression of LHG skin tissue in the outer root sheath of primary hair follicles was higher than that of SHG in three periods. So, it is suggested that the PI3K-AKT signal pathway and FGF21 may play an important role in the formation of different hair types in Inner Mongolia cashmere goats.


Assuntos
Cabras , Fosfatidilinositol 3-Quinases , Animais , Cabras/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cabelo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Animals (Basel) ; 12(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35681921

RESUMO

The Inner Mongolia cashmere goat is an excellent local breed in China. According to the characteristics of wool quilts, the Inner Mongolia cashmere goat can be divided into three types: a long-hair type (hair length of >22 cm), a short-hair type (hair length of ≤13 cm), and an intermediate type (hair length of >13 cm and ≤22 cm). It is found that hair length has a certain reference value for the indirect selection of other important economic traits of cashmere. In order to explore the molecular mechanisms and related regulatory genes of the different hair types, a weighted gene coexpression network analysis (WGCNA) was carried out on the gene expression data and phenotypic data of 12-month-old Inner Mongolia cashmere goats with a long-hair type (LHG) and a short-hair type (SHG) to explore the coexpression modules related to different coat types and nine candidate genes, and detect the relative expression of key candidate genes. The results showed that the WGCNA divided these genes into 19 coexpression modules and found that there was a strong correlation between one module and different hair types. The expression trends of this module's genes were different in the two hair types, with high expression in the LHG and low expression in the SHG. GO functions are mainly concentrated in cellular components, including intermediate filaments (GO:0005882), intermediate filament cytoskeletons (GO:0045111), and cytoskeletal parts (GO:0044430). The KEGG pathway is mainly enriched in arginine as well as proline metabolism (chx00330) and the MAPK signaling pathway (chx04010). The candidate genes of the different hair types, including the KRT39, KRT74, LOC100861184, LOC102177231, LOC102178767, LOC102179881, LOC106503203, LOC108638293, and LOC108638298 genes, were screened. Through qRT-PCR, it was found that there were significant differences in these candidate genes between the two hair types, and most of them had a significant positive correlation with hair length. It was preliminarily inferred that these candidate genes could regulate the different hair types of cashmere goats and provide molecular markers for hair growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA