Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Res Sq ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38883748

RESUMO

Proteomic profiling of Alzheimer's disease (AD) brains has identified numerous understudied proteins, including midkine (MDK), that are highly upregulated and correlated with Aß since the early disease stage, but their roles in disease progression are not fully understood. Here we present that MDK attenuates Aß assembly and influences amyloid formation in the 5xFAD amyloidosis mouse model. MDK protein mitigates fibril formation of both Aß40 and Aß42 peptides in Thioflavin T fluorescence assay, circular dichroism, negative stain electron microscopy, and NMR analysis. Knockout of Mdkgene in 5xFAD increases amyloid formation and microglial activation. Further comprehensive mass spectrometry-based profiling of whole proteome and aggregated proteome in these mouse models indicates significant accumulation of Aß and Aß-correlated proteins, along with microglial components. Thus, our structural and mouse model studies reveal a protective role of MDK in counteracting amyloid pathology in Alzheimer's disease.

3.
Nat Immunol ; 24(10): 1735-1747, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37679549

RESUMO

Neurodegenerative diseases, including Alzheimer's disease (AD), are characterized by innate immune-mediated inflammation, but functional and mechanistic effects of the adaptive immune system remain unclear. Here we identify brain-resident CD8+ T cells that coexpress CXCR6 and PD-1 and are in proximity to plaque-associated microglia in human and mouse AD brains. We also establish that CD8+ T cells restrict AD pathologies, including ß-amyloid deposition and cognitive decline. Ligand-receptor interaction analysis identifies CXCL16-CXCR6 intercellular communication between microglia and CD8+ T cells. Further, Cxcr6 deficiency impairs accumulation, tissue residency programming and clonal expansion of brain PD-1+CD8+ T cells. Ablation of Cxcr6 or CD8+ T cells ultimately increases proinflammatory cytokine production from microglia, with CXCR6 orchestrating brain CD8+ T cell-microglia colocalization. Collectively, our study reveals protective roles for brain CD8+ T cells and CXCR6 in mouse AD pathogenesis and highlights that microenvironment-specific, intercellular communication orchestrates tissue homeostasis and protection from neuroinflammation.

4.
Mol Cell Proteomics ; 22(8): 100608, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356496

RESUMO

Protein aggregation of amyloid-ß peptides and tau are pathological hallmarks of Alzheimer's disease (AD), which are often resistant to detergent extraction and thus enriched in the insoluble proteome. However, additional proteins that coaccumulate in the detergent-insoluble AD brain proteome remain understudied. Here, we comprehensively characterized key proteins and pathways in the detergent-insoluble proteome from human AD brain samples using differential extraction, tandem mass tag (TMT) labeling, and two-dimensional LC-tandem mass spectrometry. To improve quantification accuracy of the TMT method, we developed a complement TMT-based strategy to correct for ratio compression. Through the meta-analysis of two independent detergent-insoluble AD proteome datasets (8914 and 8917 proteins), we identified 190 differentially expressed proteins in AD compared with control brains, highlighting the pathways of amyloid cascade, RNA splicing, endocytosis/exocytosis, protein degradation, and synaptic activity. To differentiate the truly detergent-insoluble proteins from copurified background during protein extraction, we analyzed the fold of enrichment for each protein by comparing the detergent-insoluble proteome with the whole proteome from the same AD samples. Among the 190 differentially expressed proteins, 84 (51%) proteins of the upregulated proteins (n = 165) were enriched in the insoluble proteome, whereas all downregulated proteins (n = 25) were not enriched, indicating that they were copurified components. The vast majority of these enriched 84 proteins harbor low-complexity regions in their sequences, including amyloid-ß, Tau, TARDBP/TAR DNA-binding protein 43, SNRNP70/U1-70K, MDK, PTN, NTN1, NTN3, and SMOC1. Moreover, many of the enriched proteins in AD were validated in the detergent-insoluble proteome by five steps of differential extraction, proteomic analysis, or immunoblotting. Our study reveals a resource list of proteins and pathways that are exclusively present in the detergent-insoluble proteome, providing novel molecular insights to the formation of protein pathology in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteoma/metabolismo , Detergentes/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Encéfalo/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo
5.
Biochemistry ; 62(3): 624-632, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35969671

RESUMO

Chemoproteomics is a key platform for characterizing the mode of action for compounds, especially for targeted protein degraders such as proteolysis targeting chimeras (PROTACs) and molecular glues. With deep proteome coverage, multiplexed tandem mass tag-mass spectrometry (TMT-MS) can tackle up to 18 samples in a single experiment. Here, we present a pooling strategy for further enhancing the throughput and apply the strategy to an FDA-approved drug library (95 best-in-class compounds). The TMT-MS-based pooling strategy was evaluated in the following steps. First, we demonstrated the capability of TMT-MS by analyzing more than 15 000 unique proteins (> 12 000 gene products) in HEK293 cells treated with five PROTACs (two BRD/BET degraders and three degraders for FAK, ALK, and BTK kinases). We then introduced a rationalized pooling strategy to separate structurally similar compounds in different pools and identified the proteomic response to 14 pools from the drug library. Finally, we validated the proteomic response from one pool by reprofiling the cells via treatment with individual drugs with sufficient replicates. Interestingly, numerous proteins were found to change upon drug treatment, including AMD1, ODC1, PRKX, PRKY, EXO1, AEN, and LRRC58 with 7-hydroxystaurosporine; C6orf64, HMGCR, and RRM2 with Sorafenib; SYS1 and ALAS1 with Venetoclax; and ATF3, CLK1, and CLK4 with Palbocilib. Thus, pooling chemoproteomics screening provides an efficient method for dissecting the molecular targets of compound libraries.


Assuntos
Proteoma , Proteômica , Humanos , Proteômica/métodos , Células HEK293 , Biblioteca Gênica , Proteoma/análise , Proteólise
6.
Anal Chem ; 94(13): 5325-5334, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315655

RESUMO

Proteome profiling is a powerful tool in biological and biomedical studies, starting with samples at bulk, single-cell, or single-cell-type levels. Reliable methods for extracting specific cell-type proteomes are in need, especially for the cells (e.g., neurons) that cannot be readily isolated. Here, we present an innovative proximity labeling (PL) strategy for single-cell-type proteomics of mouse brain, in which TurboID (an engineered biotin ligase) is used to label almost all proteins in a specific cell type. This strategy bypasses the requirement of cell isolation and includes five major steps: (i) constructing recombinant adeno-associated viruses (AAVs) to express TurboID driven by cell-type-specific promoters, (ii) delivering the AAV to mouse brains by direct intravenous injection, (iii) enhancing PL labeling by biotin administration, (iv) purifying biotinylated proteins, followed by on-bead protein digestion, and (v) quantitative tandem-mass-tag (TMT) labeling. We first confirmed that TurboID can label a wide range of cellular proteins in human HEK293 cells and optimized the single-cell-type proteomic pipeline. To analyze specific brain cell types, we generated recombinant AAVs to coexpress TurboID and mCherry proteins, driven by neuron- or astrocyte-specific promoters and validated the expected cell expression by coimmunostaining of mCherry and cellular markers. Subsequent biotin purification and TMT analysis identified ∼10,000 unique proteins from a few micrograms of protein samples with excellent reproducibility. Comparative and statistical analyses indicated that these PL proteomes contain cell-type-specific cellular pathways. Although PL was originally developed for studying protein-protein interactions and subcellular proteomes, we extended it to efficiently tag the entire proteomes of specific cell types in the mouse brain using TurboID biotin ligase. This simple, effective in vivo approach should be broadly applicable to single-cell-type proteomics.


Assuntos
Proteoma , Proteômica , Animais , Biotinilação , Encéfalo/metabolismo , Células HEK293 , Humanos , Camundongos , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes
7.
Nat Aging ; 2(10): 923-940, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36636325

RESUMO

Recent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment. Specifically, N40K-Tg shows the reduction of GABAergic synapse components (e.g., the GABA receptor subunit of GABRA2), and concomitant postsynaptic hyperexcitability that is rescued by a GABA receptor agonist. Crossing of N40K-Tg and the 5xFAD amyloidosis model indicates that the RNA splicing defect synergizes with the amyloid cascade to remodel the brain transcriptome and proteome, deregulate synaptic proteins, and accelerate cognitive decline. Thus, our results support the contribution of U1 snRNP-mediated splicing dysfunction to AD pathogenesis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Ribonucleoproteína Nuclear Pequena U1/genética , Doença de Alzheimer/genética , Proteoma/genética , Splicing de RNA/genética , Disfunção Cognitiva/genética
9.
Mol Neurodegener ; 16(1): 55, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384464

RESUMO

Mass spectrometry-based proteomics empowers deep profiling of proteome and protein posttranslational modifications (PTMs) in Alzheimer's disease (AD). Here we review the advances and limitations in historic and recent AD proteomic research. Complementary to genetic mapping, proteomic studies not only validate canonical amyloid and tau pathways, but also uncover novel components in broad protein networks, such as RNA splicing, development, immunity, membrane transport, lipid metabolism, synaptic function, and mitochondrial activity. Meta-analysis of seven deep datasets reveals 2,698 differentially expressed (DE) proteins in the landscape of AD brain proteome (n = 12,017 proteins/genes), covering 35 reported AD genes and risk loci. The DE proteins contain cellular markers enriched in neurons, microglia, astrocytes, oligodendrocytes, and epithelial cells, supporting the involvement of diverse cell types in AD pathology. We discuss the hypothesized protective or detrimental roles of selected DE proteins, emphasizing top proteins in "amyloidome" (all biomolecules in amyloid plaques) and disease progression. Comprehensive PTM analysis represents another layer of molecular events in AD. In particular, tau PTMs are correlated with disease stages and indicate the heterogeneity of individual AD patients. Moreover, the unprecedented proteomic coverage of biofluids, such as cerebrospinal fluid and serum, procures novel putative AD biomarkers through meta-analysis. Thus, proteomics-driven systems biology presents a new frontier to link genotype, proteotype, and phenotype, accelerating the development of improved AD models and treatment strategies.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteoma , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Doenças Assintomáticas , Biomarcadores , Proteínas Sanguíneas/análise , Proteínas do Líquido Cefalorraquidiano/análise , Cromatografia Líquida , Disfunção Cognitiva/metabolismo , Mineração de Dados , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Humanos , Metanálise como Assunto , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Placa Amiloide/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espectrometria de Massas em Tandem
10.
Mol Neurodegener ; 15(1): 43, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711556

RESUMO

BACKGROUND: Based on amyloid cascade and tau hypotheses, protein biomarkers of different Aß and tau species in cerebrospinal fluid (CSF) and blood/plasma/serum have been examined to correlate with brain pathology. Recently, unbiased proteomic profiling of these human samples has been initiated to identify a large number of novel AD biomarker candidates, but it is challenging to define reliable candidates for subsequent large-scale validation. METHODS: We present a comprehensive strategy to identify biomarker candidates of high confidence by integrating multiple proteomes in AD, including cortex, CSF and serum. The proteomes were analyzed by the multiplexed tandem-mass-tag (TMT) method, extensive liquid chromatography (LC) fractionation and high-resolution tandem mass spectrometry (MS/MS) for ultra-deep coverage. A systems biology approach was used to prioritize the most promising AD signature proteins from all proteomic datasets. Finally, candidate biomarkers identified by the MS discovery were validated by the enzyme-linked immunosorbent (ELISA) and TOMAHAQ targeted MS assays. RESULTS: We quantified 13,833, 5941, and 4826 proteins from human cortex, CSF and serum, respectively. Compared to other studies, we analyzed a total of 10 proteomic datasets, covering 17,541 proteins (13,216 genes) in 365 AD, mild cognitive impairment (MCI) and control cases. Our ultra-deep CSF profiling of 20 cases uncovered the majority of previously reported AD biomarker candidates, most of which, however, displayed no statistical significance except SMOC1 and TGFB2. Interestingly, the AD CSF showed evident decrease of a large number of mitochondria proteins that were only detectable in our ultra-deep analysis. Further integration of 4 cortex and 4 CSF cohort proteomes highlighted 6 CSF biomarkers (SMOC1, C1QTNF5, OLFML3, SLIT2, SPON1, and GPNMB) that were consistently identified in at least 2 independent datasets. We also profiled CSF in the 5xFAD mouse model to validate amyloidosis-induced changes, and found consistent mitochondrial decreases (SOD2, PRDX3, ALDH6A1, ETFB, HADHA, and CYB5R3) in both human and mouse samples. In addition, comparison of cortex and serum led to an AD-correlated protein panel of CTHRC1, GFAP and OLFM3. In summary, 37 proteins emerged as potential AD signatures across cortex, CSF and serum, and strikingly, 59% of these were mitochondria proteins, emphasizing mitochondrial dysfunction in AD. Selected biomarker candidates were further validated by ELISA and TOMAHAQ assays. Finally, we prioritized the most promising AD signature proteins including SMOC1, TAU, GFAP, SUCLG2, PRDX3, and NTN1 by integrating all proteomic datasets. CONCLUSIONS: Our results demonstrate that novel AD biomarker candidates are identified and confirmed by proteomic studies of brain tissue and biofluids, providing a rich resource for large-scale biomarker validation for the AD community.


Assuntos
Doença de Alzheimer , Biomarcadores , Córtex Cerebral/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/metabolismo , Humanos , Fragmentos de Peptídeos/metabolismo , Proteômica/métodos , Proteínas tau/metabolismo
12.
Neuron ; 105(6): 975-991.e7, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31926610

RESUMO

Alzheimer's disease (AD) displays a long asymptomatic stage before dementia. We characterize AD stage-associated molecular networks by profiling 14,513 proteins and 34,173 phosphosites in the human brain with mass spectrometry, highlighting 173 protein changes in 17 pathways. The altered proteins are validated in two independent cohorts, showing partial RNA dependency. Comparisons of brain tissue and cerebrospinal fluid proteomes reveal biomarker candidates. Combining with 5xFAD mouse analysis, we determine 15 Aß-correlated proteins (e.g., MDK, NTN1, SMOC1, SLIT2, and HTRA1). 5xFAD shows a proteomic signature similar to symptomatic AD but exhibits activation of autophagy and interferon response and lacks human-specific deleterious events, such as downregulation of neurotrophic factors and synaptic proteins. Multi-omics integration prioritizes AD-related molecules and pathways, including amyloid cascade, inflammation, complement, WNT signaling, TGF-ß and BMP signaling, lipid metabolism, iron homeostasis, and membrane transport. Some Aß-correlated proteins are colocalized with amyloid plaques. Thus, the multilayer omics approach identifies protein networks during AD progression.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Progressão da Doença , Redes e Vias Metabólicas , Proteoma/metabolismo , Proteômica , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Pessoa de Meia-Idade , Fosfoproteínas/metabolismo
13.
Clin Proteomics ; 16: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019427

RESUMO

BACKGROUND: Blood-based protein measurement is a routine practice for detecting biomarkers in human disease. Comprehensive profiling of blood/plasma/serum proteome is a challenge due to an extremely large dynamic range, as exemplified by a small subset of highly abundant proteins. Antibody-based depletion of these abundant proteins alleviates the problem but introduces experimental variations. We aimed to establish a method for direct profiling of undepleted human serum and apply the method toward biomarker discovery for Alzheimer's disease (AD), as AD is the most common form of dementia without available blood-based biomarkers in clinic. METHODS: We present an ultra-deep analysis of undepleted human serum proteome by combining the latest 11-plex tandem-mass-tag (TMT) labeling, exhaustive two-dimensional liquid chromatography (LC/LC) fractionation (the 1st LC: 3 h for 180 fractions, and the 2nd LC: 3 h gradient per fraction), coupled with high resolution tandem mass spectrometry (MS/MS). AD (n = 6) and control (n = 5) sera were analyzed in this pilot study. In addition, we implemented a multiplexed targeted LC-MS3 method (TOMAHAQ) for the validation of selected target proteins. RESULTS: The TMT-LC/LC-MS/MS platform is capable of analyzing 4826 protein components (4368 genes), covering at least 6 orders of magnitude in dynamic range, representing one of the deepest serum proteome analysis. We defined intra- and inter- group variability in the AD and control groups. Statistical analysis revealed differentially expressed proteins in AD (26 decreased and 4 increased). Notably, these altered proteins are enriched in the known pathways of mitochondria, fatty acid beta oxidation, and AGE/RAGE. Finally, we set up a TOMAHAQ method to confirm the decrease of PCK2 and AK2 in our AD samples. CONCLUSIONS: Our results show an ultra-deep serum discovery study by TMT-LC/LC-MS/MS, and a validation experiment by TOMAHAQ targeted LC-MS3. The MS-based discovery and validation methods are of general use for biomarker discovery from complex biofluids (e.g. serum proteome). This pilot study also identified deregulated proteins, in particular proteins associated with mitochondrial function in the AD serum samples. These proteins may serve as novel AD candidate biomarkers.

14.
Nat Med ; 24(4): 427-437, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29505030

RESUMO

Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by toxic gain of function of the androgen receptor (AR). Previously, we found that co-regulator binding through the activation function-2 (AF2) domain of AR is essential for pathogenesis, suggesting that AF2 may be a potential drug target for selective modulation of toxic AR activity. We screened previously identified AF2 modulators for their ability to rescue toxicity in a Drosophila model of SBMA. We identified two compounds, tolfenamic acid (TA) and 1-[2-(4-methylphenoxy)ethyl]-2-[(2-phenoxyethyl)sulfanyl]-1H-benzimidazole (MEPB), as top candidates for rescuing lethality, locomotor function and neuromuscular junction defects in SBMA flies. Pharmacokinetic analyses in mice revealed a more favorable bioavailability and tissue retention of MEPB compared with TA in muscle, brain and spinal cord. In a preclinical trial in a new mouse model of SBMA, MEPB treatment yielded a dose-dependent rescue from loss of body weight, rotarod activity and grip strength. In addition, MEPB ameliorated neuronal loss, neurogenic atrophy and testicular atrophy, validating AF2 modulation as a potent androgen-sparing strategy for SBMA therapy.


Assuntos
Atrofia Muscular Espinal/patologia , Degeneração Neural/patologia , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Proteínas Correpressoras/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Células HEK293 , Humanos , Masculino , Camundongos Transgênicos , Atrofia Muscular Espinal/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Fenótipo , Projetos Piloto , Domínios Proteicos , Expansão das Repetições de Trinucleotídeos/genética , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/uso terapêutico
15.
Front Mol Neurosci ; 8: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954152

RESUMO

Ubiquitin-specific protease 14 (USP14) is a major deubiquitinating enzyme and a key determinant of neuromuscular junction (NMJ) structure and function. We have previously reported dramatic ubiquitin depletion in the nervous systems of the USP14-deficient ataxia (ax (J) ) mice and demonstrated that transgenic ubiquitin overexpression partially rescues the ax (J) neuromuscular phenotype. However, later work has shown that ubiquitin overexpression does not correct the ax (J) deficits in hippocampal short term plasticity, and that transgenic expression of a catalytically inactive form of USP14 in the nervous system mimics the neuromuscular phenotype observed in the ax (J) mice, but causes a only a modest reduction of free ubiquitin. Instead, increased ubiquitin conjugates and aberrant activation of pJNK are observed in the nervous systems of the USP14 catalytic mutant mice. In this report, we demonstrate that restoring free ubiquitin levels in the USP14 catalytic mutant mice improved NMJ structure and reduced pJNK accumulation in motor neuron terminals, but had a negative impact on measures of NMJ function, such as motor performance and muscle development. Transgenic expression of ubiquitin had a dose-dependent effect on NMJ function in wild type mice: moderate levels of overexpression improved NMJ function while more robust ubiquitin overexpression reduced muscle development and motor coordination. Combined, these results suggest that maintenance of free ubiquitin levels by USP14 contributes to NMJ structure, but that USP14 regulates NMJ function through a separate pathway.

16.
Mol Cell Proteomics ; 14(7): 1898-910, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25931508

RESUMO

The mind bomb 1 (Mib1) ubiquitin ligase is essential for controlling metazoan development by Notch signaling and possibly the Wnt pathway. It is also expressed in postmitotic neurons and regulates neuronal morphogenesis and synaptic activity by mechanisms that are largely unknown. We sought to comprehensively characterize the Mib1 interactome and study its potential function in neuron development utilizing a novel sequential elution strategy for affinity purification, in which Mib1 binding proteins were eluted under different stringency and then quantified by the isobaric labeling method. The strategy identified the Mib1 interactome with both deep coverage and the ability to distinguish high-affinity partners from low-affinity partners. A total of 817 proteins were identified during the Mib1 affinity purification, including 56 high-affinity partners and 335 low-affinity partners, whereas the remaining 426 proteins are likely copurified contaminants or extremely weak binding proteins. The analysis detected all previously known Mib1-interacting proteins and revealed a large number of novel components involved in Notch and Wnt pathways, endocytosis and vesicle transport, the ubiquitin-proteasome system, cellular morphogenesis, and synaptic activities. Immunofluorescence studies further showed colocalization of Mib1 with five selected proteins: the Usp9x (FAM) deubiquitinating enzyme, alpha-, beta-, and delta-catenins, and CDKL5. Mutations of CDKL5 are associated with early infantile epileptic encephalopathy-2 (EIEE2), a severe form of mental retardation. We found that the expression of Mib1 down-regulated the protein level of CDKL5 by ubiquitination, and antagonized CDKL5 function during the formation of dendritic spines. Thus, the sequential elution strategy enables biochemical characterization of protein interactomes; and Mib1 analysis provides a comprehensive interactome for investigating its role in signaling networks and neuronal development.


Assuntos
Espinhas Dendríticas/metabolismo , Mapeamento de Interação de Proteínas , Ubiquitina-Proteína Ligases/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia de Afinidade , Células HEK293 , Humanos , Marcação por Isótopo , Neurogênese , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Ratos , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , beta Catenina/metabolismo
17.
Mol Neurodegener ; 10: 3, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25575639

RESUMO

BACKGROUND: Ubiquitin-specific protease 14 (USP14) is one of three proteasome-associated deubiquitinating enzymes that remove ubiquitin from proteasomal substrates prior to their degradation. In vitro evidence suggests that inhibiting USP14's catalytic activity alters the turnover of ubiquitinated proteins by the proteasome, although whether protein degradation is accelerated or delayed seems to be cell-type and substrate specific. For example, combined inhibition of USP14 and the proteasomal deubiquitinating enzyme UCH37 halts protein degradation and promotes apoptosis in multiple myeloma cells, whereas USP14 inhibition alone accelerates the degradation of aggregate-prone proteins in immortalized cell lines. These findings have prompted interest in USP14 as a therapeutic target both inside and outside of the nervous system. However, loss of USP14 in the spontaneously occurring ataxia mouse mutant leads to a dramatic neuromuscular phenotype and early perinatal lethality, suggesting that USP14 inhibition may have adverse consequences in the nervous system. We therefore expressed a catalytically inactive USP14 mutant in the mouse nervous system to determine whether USP14's catalytic activity is required for neuromuscular junction (NMJ) structure and function. RESULTS: Mice expressing catalytically inactive USP14 in the nervous system exhibited motor deficits, altered NMJ structure, and synaptic transmission deficits that were similar to what is observed in the USP14-deficient ataxia mice. Acute pharmacological inhibition of USP14 in wild type mice also reduced NMJ synaptic transmission. However, there was no evidence of altered proteasome activity when USP14 was inhibited either genetically or pharmacologically. Instead, these manipulations increased the levels of non-proteasome targeting ubiquitin conjugates. Specifically, we observed enhanced proteasome-independent ubiquitination of mixed lineage kinase 3 (MLK3). Consistent with the direct activation of MLK3 by ubiquitination, we also observed increased activation of its downstrea targets MAP kinase kinase 4 (MKK4) and c-Jun N-terminal kinase (JNK). In vivo inhibition of JNK improved motor function and synapse structure in the USP14 catalytic mutant mice. CONCLUSIONS: USP14's catalytic activity is required for nervous system structure and function and has an ongoing role in NMJ synaptic transmission. By regulating the ubiquitination status of protein kinases, USP14 can coordinate the activity of intracellular signaling pathways that control the development and activity of the NMJ.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Junção Neuromuscular/fisiopatologia , Transdução de Sinais/fisiologia , Ubiquitina Tiolesterase/fisiologia , Animais , Antracenos/farmacologia , Ataxia/genética , Ataxia/patologia , Ataxia/fisiopatologia , Catálise , Células Cultivadas , Córtex Cerebral/citologia , Comportamento Exploratório , Feminino , Força da Mão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/ultraestrutura , Neurônios/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma , Processamento de Proteína Pós-Traducional , Proteólise , Pirróis/farmacologia , Pirrolidinas/farmacologia , Teste de Desempenho do Rota-Rod , Transdução de Sinais/genética , Transgenes , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética , Ubiquitinação
18.
J Proteome Res ; 13(11): 4526-34, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24902715

RESUMO

The accumulation of pathologic protein fragments is common in neurodegenerative disorders. We have recently identified in Alzheimer's disease (AD) the aggregation of the U1-70K splicing factor and abnormal RNA processing. Here, we present that U1-70K can be cleaved into an N-terminal truncation (N40K) in ∼50% of AD cases, and the N40K abundance is inversely proportional to the total level of U1-70K. To map the cleavage site, we compared tryptic peptides of N40K and stable isotope labeled U1-70K by liquid chromatography-tandem mass spectrometry (MS), revealing that the proteolysis site is located in a highly repetitive and hydrophilic domain of U1-70K. We then adapted Western blotting to map the cleavage site in two steps: (i) mass spectrometric analysis revealing that U1-70K and N40K share the same N-termini and contain no major modifications; (ii) matching N40K with a series of six recombinant U1-70K truncations to define the cleavage site within a small region (Arg300 ± 6 residues). Finally, N40K expression led to substantial degeneration of rat primary hippocampal neurons. In summary, we combined multiple approaches to identify the U1-70K proteolytic site and found that the N40K fragment might contribute to neuronal toxicity in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Western Blotting , Cromatografia Líquida , Humanos , Proteólise , Ratos , Espectrometria de Massas em Tandem
19.
Proc Natl Acad Sci U S A ; 110(41): 16562-7, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24023061

RESUMO

Deposition of insoluble protein aggregates is a hallmark of neurodegenerative diseases. The universal presence of ß-amyloid and tau in Alzheimer's disease (AD) has facilitated advancement of the amyloid cascade and tau hypotheses that have dominated AD pathogenesis research and therapeutic development. However, the underlying etiology of the disease remains to be fully elucidated. Here we report a comprehensive study of the human brain-insoluble proteome in AD by mass spectrometry. We identify 4,216 proteins, among which 36 proteins accumulate in the disease, including U1-70K and other U1 small nuclear ribonucleoprotein (U1 snRNP) spliceosome components. Similar accumulations in mild cognitive impairment cases indicate that spliceosome changes occur in early stages of AD. Multiple U1 snRNP subunits form cytoplasmic tangle-like structures in AD but not in other examined neurodegenerative disorders, including Parkinson disease and frontotemporal lobar degeneration. Comparison of RNA from AD and control brains reveals dysregulated RNA processing with accumulation of unspliced RNA species in AD, including myc box-dependent-interacting protein 1, clusterin, and presenilin-1. U1-70K knockdown or antisense oligonucleotide inhibition of U1 snRNP increases the protein level of amyloid precursor protein. Thus, our results demonstrate unique U1 snRNP pathology and implicate abnormal RNA splicing in AD pathogenesis.


Assuntos
Processamento Alternativo/fisiologia , Doença de Alzheimer/fisiopatologia , Encéfalo/metabolismo , Proteoma/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo , Processamento Alternativo/genética , Western Blotting , Cromatografia Líquida , Imunofluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Proteoma/genética , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
20.
Cell Biochem Biophys ; 67(1): 67-73, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23686613

RESUMO

Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson's disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating the synaptic activity.


Assuntos
Neurônios/metabolismo , Ubiquitina/metabolismo , Humanos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Transdução de Sinais , Sinapses/metabolismo , Ubiquitina/biossíntese , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA