Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Opt Express ; 32(6): 9958-9966, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571219

RESUMO

In this study, a three-dimensional (3D) laser micromachining system with an integrated sub-100 nm resolution in-situ measurement system was proposed. The system used the same femtosecond laser source for in-situ measurement and machining, avoiding errors between the measurement and the machining positions. It could measure the profile of surfaces with an inclination angle of less than 10°, and the measurement resolution was greater than 100 nm. Consequently, the precise and stable movement of the laser focus could be controlled, enabling highly stable 3D micromachining. The results showed that needed patterns could be machined on continuous surfaces using the proposed system. The proposed machining system is of great significance for broadening the application scenarios of laser machining.

2.
ACS Appl Mater Interfaces ; 16(7): 9581-9592, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38332526

RESUMO

Microlens arrays (MLAs) with a tunable imaging ability are core components of advanced micro-optical systems. Nevertheless, tunable MLAs generally suffer from high power consumption, an undeformable rigid body, large and complex systems, or limited focal length tunability. The combination of reconfigurable smart materials with MLAs may lead to distinct advantages including programmable deformation, remote manipulation, and multimodal tunability. However, unlike photopolymers that permit flexible structuring, the fabrication of tunable MLAs and compound eyes (CEs) based on transparent smart materials is still rare. In this work, we report reconfigurable MLAs that enable tunable imaging based on shape memory polymers (SMPs). The smart MLAs with closely packed 200 × 200 microlenses (40.0 µm in size) are fabricated via a combined technology that involves wet etching-assisted femtosecond laser direct writing of MLA templates on quartz, soft lithography for MLA duplication using SMPs, and the mechanical heat setting for programmable reconfiguration. By stretching or squeezing the shape memory MLAs at the transition temperature (80 °C), the size, profiles, and spatial distributions of the microlenses can be programmed. When the MLA is stretched from 0 to 120% (area ratio), the focal length is increased from 116 to 283 µm. As a proof of concept, reconfigurable MLAs and a 3D CE with a tunable field of view (FOV, 160-0°) have been demonstrated in which the thermally triggered shape memory deformation has been employed for tunable imaging. The reconfigurable MLAs and CEs with a tunable focal length and adjustable FOV may hold great promise for developing smart micro-optical systems.

3.
Opt Lett ; 49(4): 850-853, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359198

RESUMO

Lithium niobate (LN) crystal plays important roles in future integrated photonics, but it is still a great challenge to efficiently fabricate three-dimensional micro-/nanostructures on it. Here, a femtosecond laser direct writing-assisted liquid back-etching technology (FsLDW-LBE) is proposed to achieve the three-dimensional (3D) microfabrication of lithium niobate (LN) with high surface quality (Ra = 0.422 nm). Various 3D structures, such as snowflakes, graphic arrays, criss-cross arrays, and helix arrays, have been successfully fabricated on the surface of LN crystals. As an example, a microcone array was fabricated on LN crystals, which showed a strong second harmonic signal enhancement with up to 12 times bigger than the flat lithium niobate. The results indicate that the method provides a new approach for the microfabrication of lithium niobate crystals for nonlinear optics.

4.
Opt Lett ; 49(4): 911-914, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359214

RESUMO

In this Letter, a method for the fabrication of bifocal lenses is presented by combining surface ablation and bulk modification in a single laser exposure followed by the wet etching processing step. The intensity of a single femtosecond laser pulse was modulated axially into two foci with a designed computer-generated hologram (CGH). Such pulse simultaneously induced an ablation region on the surface and a modified volume inside the fused silica. After etching in hydrofluoric acid (HF), the two exposed regions evolved into a bifocal lens. The area ratio (diameter) of the two lenses can be flexibly adjusted via control of the pulse energy distribution through the CGH. Besides, bifocal lenses with a center offset as well as convex lenses were obtained by a replication technique. This method simplifies the fabrication of micro-optical elements and opens a highly efficient and simple pathway for complex optical surfaces and integrated imaging systems.

5.
Proc Natl Acad Sci U S A ; 121(6): e2309096120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285934

RESUMO

Invisibility, a fascinating ability of hiding objects within environments, has attracted broad interest for a long time. However, current invisibility technologies are still restricted to stationary environments and narrow band. Here, we experimentally demonstrate a Chimera metasurface for multiterrain invisibility by synthesizing the natural camouflage traits of various poikilotherms. The metasurface achieves chameleon-like broadband in situ tunable microwave reflection mimicry of realistic water surface, shoal, beach/desert, grassland, and frozen ground from 8 to 12 GHz freely via the circuit-topology-transited mode evolution, while remaining optically transparent as an invisible glass frog. Additionally, the mechanic-driven Chimera metasurface without active electrothermal effect, owning a bearded dragon-like thermal acclimation, can decrease the maximum thermal imaging difference to 3.1 °C in tested realistic terrains, which cannot be recognized by human eyes. Our work transitions camouflage technologies from the constrained scenario to ever-changing terrains and constitutes a big advance toward the new-generation reconfigurable electromagnetics with circuit-topology dynamics.

6.
Opt Lett ; 48(15): 3845-3848, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527064

RESUMO

A novel high-sensitivity temperature sensor based on a chirped thin-core fiber Bragg grating Fabry-Perot interferometer (CTFBG-FPI) and the Vernier effect is proposed and demonstrated. With femtosecond laser direct writing technology, two CTFBG-FPIs with different interferometric cavity lengths are inscribed inside a thin-core fiber to form a Vernier effect system. The two FPIs consist of two pairs of CTFBGs with a full width at half maximum (FWHM) of 66.5 nm staggered in parallel. The interferometric cavity lengths of the two FPIs were designed to be 2 mm and 1.98 mm as the reference arm and sensing arm of the sensor, respectively. The temperature sensitivity of this sensor was measured to be -1.084 nm/°C in a range of 40-90°C. This sensor is expected to play a crucial role in precision temperature measurement applications.

7.
Phys Rev Lett ; 130(21): 213603, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295078

RESUMO

Photonic topological states, providing light-manipulation approaches in robust manners, have attracted intense attention. Connecting photonic topological states with far-field degrees of freedom (d.o.f.) has given rise to fruitful phenomena. Recently emerged higher-order topological insulators (HOTIs), hosting boundary states two or more dimensions lower than those of bulk, offer new paradigms to localize or transport light topologically in extended dimensionalities. However, photonic HOTIs have not been related to d.o.f. of radiation fields yet. Here, we report the observation of polarization-orthogonal second-order topological corner states at different frequencies on a designer-plasmonic kagome metasurface in the far field. Such phenomenon stands on two mechanisms, i.e., projecting the far-field polarizations to the intrinsic parity d.o.f. of lattice modes and the parity splitting of the plasmonic corner states in spectra. We theoretically and numerically show that the parity splitting originates from the underlying interorbital coupling. Both near-field and far-field experiments verify the polarization-orthogonal nondegenerate second-order topological corner states. These results promise applications in robust optical single photon emitters and multiplexed photonic devices.


Assuntos
Frutas , Fótons , Feminino , Gravidez , Humanos
8.
Opt Lett ; 48(11): 2841-2844, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262224

RESUMO

The formation mechanism of laser-induced periodic surface structures (LIPSS) has been a key to high-resolution sub-diffraction lithography or high-efficiency large-area nanotexturing. We show the evolution of LIPSS formation from a nanohole seed structure to high-spatial-frequency LIPSS by using a tightly focused and rectangular-shaped laser beam with different shape-polarization orientations. Formation of LIPSS based on light intensity distribution without invoking any long-range electromagnetic modes achieved quantitative match between modeling and experiment. Our results clearly show the entire step-like and deterministic process of LIPSS evolution based on experimental data and numerical simulations, revealing the dominant structural near-field enhancement on the ripple formation. A rectangular-shaped beam with an aspect ratio of 7:3 was used to break the symmetry of a circularly shaped focus. By azimuthally rotating the orientation of the focal spot and the polarization, it is possible to visualize the far-field effect for the initial seed structure formation and the competition between the far and near fields in the subsequent structure evolution.

9.
Opt Lett ; 48(11): 3063-3066, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262281

RESUMO

Rotated optical axis waveguides can facilitate on-chip arbitrary wave-plate operations, which are crucial tools for developing integrated universal quantum computing algorithms. In this paper, we propose a unique technique based on femtosecond laser direct writing technology to fabricate arbitrarily rotated optical axis waveguides. First, a circular isotropic main waveguide with a non-optical axis was fabricated using a beam shaping method. Thereafter, a trimming line was used to create an artificial stress field near the main waveguide to induce a rotated optical axis. Using this technique, we fabricated high-performance half- and quarter-wave plates. Subsequently, high-fidelity (97.1%) Pauli-X gate operation was demonstrated via quantum process tomography, which constitutes the basis for the full manipulation of on-chip polarization-encoded qubits. In the future, this work is expected to lead to new prospects for polarization-encoded information in photonic integrated circuits.

10.
Opt Lett ; 48(12): 3283-3286, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319082

RESUMO

Topological edge states are a generic feature of topological insulators, and the long-range interactions, which break certain properties of topological edge states, are always non-negligible in real physical systems. In this Letter, we investigate the influence of next-nearest-neighbor (NNN) interactions on the topological properties of the Su-Schrieffer-Heeger (SSH) model by extracting the survival probabilities at the boundary of the photonic lattices. By introducing a series of integrated photonic waveguide arrays with different strengths of long-range interactions, we experimentally observe delocalization transition of light in SSH lattices with nontrivial phase, which is in good agreement with our theoretical predictions. The results indicate that the NNN interactions can significantly affect the edge states, and that the localization of these states can be absent in topologically nontrivial phase. Our work provides an alternative way to investigate the interplay between long-range interactions and localized states, which may stimulate further interest in topological properties in relevant structures.


Assuntos
Fótons , Análise por Conglomerados
11.
Opt Express ; 31(9): 14796-14807, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157336

RESUMO

Femtosecond laser-induced deep-subwavelength structures have attracted much attention as a nanoscale surface texturization technique. A better understanding of the formation conditions and period control is required. Herein, we report a method of non-reciprocal writing via a tailored optical far-field exposure, where the period of ripples varies along different scanning directions, and achieve a continuous manipulation of the period from 47 to 112 nm (±4 nm) for a 100-nm-thick indium tin oxide (ITO) on glass. A full electromagnetic model was developed to demonstrate the redistributed localized near-field at different stages of ablation with nanoscale precision. It explains the formation of ripples and the asymmetry of the focal spot determines the non-reciprocity of ripple writing. Combined with beam shaping techniques, we achieved non-reciprocal writing (regarding scanning direction) using an aperture-shaped beam. The non-reciprocal writing is expected to open new paths for precise and controllable nanoscale surface texturing.

12.
Opt Lett ; 48(5): 1140-1143, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857233

RESUMO

The implementation of transverse mode, polarization, frequency, and other degrees of freedom (d.o.f.s) of photons is an important way to improve the capability of photonic circuits. Here, a three-dimensional (3D) linear polarized (LP) LP11 mode converter was designed and fabricated using a femtosecond laser direct writing (FsLDW) technique. The converter included multi-mode waveguides, symmetric Y splitters, and phase delaying waveguides, which were constructed as different numbers and arrangements of circular cross section waveguides. Finally, the modes (LP11a and LP11b) were generated on-chip with a relatively low insertion loss (IL). The mode converter lays a foundation for on-chip high-order mode generation and conversion between different modes, and will play a significant role in mode coding and decoding of 3D photonic circuits.

13.
Small ; 19(24): e2207968, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36899492

RESUMO

Femtosecond lasers enable flexible and thermal-damage-free ablation of solid materials and are expected to play a critical role in high-precision cutting, drilling, and shaping of electronic chips, display panels, and industrial parts. Although the potential applications are theoretically predicted, true 3D nano-sculpturing of solids such as glasses and crystals, has not yet been demonstrated, owing to the technical challenge of negative cumulative effects of surface changes and debris accumulation on the delivery of laser pulses and subsequent material removal during direct-write ablation. Here, a femtosecond laser-induced cavitation-assisted true 3D nano-sculpturing technique based on the ingenious combination of cavitation dynamics and backside ablation is proposed to achieve stable clear-field point-by-point material removal in real time for precise 3D subtractive fabrication on various difficult-to-process materials. As a result, 3D devices including free-form silica lenses, micro-statue with vivid facial features, and rotatable sapphire micro-mechanical turbine, all with surface roughness less than 10 nm are readily produced. The true 3D processing capability can immediately enable novel structural and functional micro-nano optics and non-silicon micro-electro-mechanical systems based on various hard solids.

14.
Opt Lett ; 48(3): 554-557, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723529

RESUMO

Optical waveguides prepared by femtosecond laser direct writing have birefringent properties, which can affect polarization encoding and entanglement on chips. Here, we first propose a shape-stress dual compensation fabrication scheme to decrease birefringence. Ultralow birefringent waveguides (1 × 10-9) were obtained by controlling the cross sectional shape of the main waveguide and adjusting the position of the auxiliary lines. In addition, we prepared polarization-independent directional coupler and demonstrated the evolution of polarization-independent waveguide array with different polarized light. In the future, ultralow birefringent waveguides will be widely applied in polarization encoding and entangled quantum photonic integrated circuits.

15.
Phys Rev Lett ; 129(17): 173601, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332264

RESUMO

Edge states in topological phase transitions have been observed in various platforms. To date, verification of the edge states and the associated topological invariant are mostly studied, and yet a quantitative measurement of topological phase transitions is still lacking. Here, we show the direct measurement of edge states and their localization lengths from survival probability. We employ photonic waveguide arrays to demonstrate the topological phase transitions based on the Su-Schrieffer-Heeger model. By measuring the survival probability at the lattice boundary, we show that in the long-time limit, the survival probability is P=(1-e^{-2/ξ_{loc}})^{2}, where ξ_{loc} is the localization length. This length derived from the survival probability is compared with the distance from the transition point, yielding a critical exponent of ν=0.94±0.04 at the phase boundary. Our experiment provides an alternative route to characterizing topological phase transitions and extracting their key physical quantities.


Assuntos
Probabilidade , Transição de Fase
16.
Opt Express ; 30(18): 32355-32365, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242299

RESUMO

To solve the problem of static magnetic field detection accuracy and consistency, we prepared an array of single NV centers for static magnetic field vector and gradient detection using the femtosecond laser direct writing method. The prepared single NV centers are characterized by fewer impurity defects and good stress uniformity, with an average spatial positioning error of only 0.2 µm. This array of single NV centers can achieve high accuracy magnetic field vector and gradient measurement with GBZ≈-0.047 µT/µm in the Z-axis. This result provides a new idea for large-range, high-precision magnetic field vector and gradient measurements.

17.
Nat Commun ; 13(1): 5634, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163128

RESUMO

Inspired by insect compound eyes (CEs) that feature unique optical schemes for imaging, there has recently been growing interest in developing optoelectronic CE cameras with comparable size and functions. However, considering the mismatch between the complex 3D configuration of CEs and the planar nature of available imaging sensors, it is currently challenging to reach this end. Here, we report a paradigm in miniature optoelectronic integrated CE camera by manufacturing polymer CEs with 19~160 logarithmic profile ommatidia via femtosecond laser two-photon polymerization. In contrast to µ-CEs with spherical ommatidia that suffer from defocusing problems, the as-obtained µ-CEs with logarithmic ommatidia permit direct integration with a commercial CMOS detector, because the depth-of-field and focus range of all the logarithmic ommatidia are significantly increased. The optoelectronic integrated µ-CE camera enables large field-of-view imaging (90°), spatial position identification and sensitive trajectory monitoring of moving targets. Moreover, the miniature µ-CE camera can be integrated with a microfluidic chip and serves as an on-chip camera for real-time microorganisms monitoring. The insect-scale optoelectronic µ-CE camera provides a practical route for integrating well-developed planar imaging sensors with complex micro-optics elements, holding great promise for cutting-edge applications in endoscopy and robot vision.


Assuntos
Insetos , Óptica e Fotônica , Animais , Lasers , Fótons , Polímeros
18.
Opt Lett ; 47(4): 921-924, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167559

RESUMO

In this study, a hybrid method for high-quality rapid drilling of transparent hard materials which combines femtosecond laser (fs-laser) Bessel beam modifying materials and selective wet etching is presented. Using this method, micro-holes with no taper of different sizes (from 10 to 35 µm) and shapes (square, triangle, circular, and pentagram) are fabricated. Bessel beams of different lengths can be generated flexibly by loading different computer-generated holograms (CGHs) into the spatial light modulator (SLM) and the maximum length of light interacting with materials can reach 320 µm, leading to a reduction of the laser scanning time by two orders of magnitude. Moreover, a set of three-dimensional multi-layer submicron through-holes in crystal materials is also realized, with an aspect ratio of more than 1000 for each hole. These results indicate that this method has broad application potential in chip packaging, aviation manufacturing, single particle catalysis, and other fields.

19.
Opt Lett ; 47(22): 5889-5892, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219128

RESUMO

Accurate photon phase control on a chip is essential to improve the expandability and stability of photonic integrated circuits (PICs). Here, we propose a novel, to the best of our knowledge, on-chip static phase control method in which a modified line is added close to the normal waveguide with a lower-energy laser. By controlling the laser energy and the position and length of the modified line, the optical phase can be precisely controlled with low loss and a three-dimensional (3D) path. Customizable phase modulation ranging from 0 to 2π is performed with a precision of λ/70 in a Mach-Zehnder interferometer. The proposed method can customize high-precision control phases without changing the waveguide's original spatial path, which is expected to control the phase and solve the phase error correction problem during processing of large-scale 3D-path PICs.

20.
Opt Express ; 29(19): 30952-30960, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614810

RESUMO

We propose a machine vision-based focus detection method (MVFD) for femtosecond laser machining. By analyzing the laser focus pattern, the defocus direction and distance are obtained simultaneously. The proposed technique presents high precision with an average error of 0.047 µm and a root mean square error (RMSE) of 0.055 µm. Moreover, the method is robust and is less affected by the tilted sample. For the curved surface sample, the average error and RMSE are 0.093 and 0.145 µm, respectively. Thus, the proposed focus detection method can be easily combined with laser processing equipment, which is widely used in large-range and high-precision femtosecond laser processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA