Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0302992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713664

RESUMO

Bean beetle (Callosobruchus maculatus) exhibits clear phenotypic plasticity depending on population density; However, the underlying molecular mechanism remains unknown. Compared to low-density individuals, high-density individuals showed a faster terminal oocyte maturity rate. Four insulin-like peptide (ILP) genes were identified in the bean beetle, which had higher expression levels in the head than in the thorax and abdomen. The population density could regulate the expression levels of CmILP1-3, CmILP2-3, and CmILP1 as well as CmILP3 in the head, thorax, and abdomen, respectively. RNA interference results showed that each CmILP could regulate terminal oocyte maturity rate, indicating that there was functional redundancy among CmILPs. Silencing each CmILP could lead to down-regulation of some other CmILPs, however, CmILP3 was up-regulated in the abdomen after silencing CmILP1 or CmILP2. Compared to single gene silencing, silencing CmILP3 with CmILP1 or CmILP2 at the same time led to more serious retardation in oocyte development, suggesting CmILP3 could be up-regulated to functionally compensate for the down-regulation of CmILP1 and CmILP2. In conclusion, population density-dependent plasticity in terminal oocyte maturity rate of bean beetle was regulated by CmILPs, which exhibited gene redundancy and gene compensation.


Assuntos
Besouros , Oócitos , Animais , Besouros/genética , Besouros/metabolismo , Oócitos/metabolismo , Oócitos/crescimento & desenvolvimento , Feminino , Interferência de RNA , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insulina/metabolismo , Insulina/genética , Densidade Demográfica , Peptídeos Semelhantes à Insulina
2.
Plant Dis ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715154

RESUMO

Quercus (Fagaceae) is a genus of ecologically and economically important shrub and tree species (Yin et al. 2018). In April 2022, powdery mildew symptoms were observed on Quercus fabri and Quercus robur leaves on Longwen hill, Guizhou Normal University, Guiyang, China. The incidence was 30% (Q. fabri, n = 50) and 20% (Q. robur, n = 30), respectively. Powdery mildew fungi from these two Quercus species shared similar morphological characteristics. Mycelia occurred on adaxial and abaxial leaf surfaces, forming small to large patches; hyphae were hyaline, 3-7 µm wide; hyphal appressoria were lobed to multilobed, solitary; conidiophores were erect, straight, 36-80 µm long (n = 30); foot cells were followed by 1-2 shorter cells; conidia formed singly, obovoid to ellipsoid, 24-38 × 12-27 µm (n = 50), without fibrosin bodies; no chasmothecia were observed. Based on these characteristics, powdery mildew fungi on both Q. fabri and Q. robur were identified as Erysiphe quercicola (Takamatsu et al. 2007). To confirm the identification, ribosomal DNA internal transcribed spacer (ITS) sequences of two fungal samples from Q. fabri and Q. robur were separately amplified and sequenced using primer pair ITS1/ITS4 (White et al. 1990). The obtained ITS sequences (GenBank accession nos. QR414372 and QR414373, respectively) shared 100% identity, and 99.38-99.84% identity with diverse ITS sequences of E. quercicola (Takamatsu et al. 2015). In a phylogenetic tree based on ITS sequences of Erysiphe species (Takamatsu et al. 2007), QR414372 and QR414373 were grouped in a clade with ITS sequences of E. quercicola. To fulfil Koch's postulates, leaves of three healthy potted Q. fabri plants and three healthy potted Q. robur plants were inoculated by gently pressing diseased Q. fabri and Q. robur leaves onto healthy leaves. Non-inoculated healthy Q. fabri and Q. robur plants served as controls. All plants were incubated in a greenhouse at 25 ± 2°C with 80% relative humidity. Typical powdery mildew symptoms were observed on all inoculated plants 15 days after inoculation, whereas no symptoms were observed on control plants. Fungi separately reisolated from inoculated Q. fabri and Q. robur were morphologically identical to those on their originally diseased plants, and ITS sequences of reisolated fungi shared 100% identity with QR414372 and QR414373. E. quercicola has previously been reported to infect Quercus species, including Q. robur in Australia, Q. crispula, Q. phillyraeoides and Q. serrata in Japan, and Q. phillyraeoides in Korea (Lee et al. 2011). In China, Q. fabri and Q. robur may be infected by E. alphitoides and E. hypophylla, respectively (Zheng et al. 1987). To our knowledge, this is the first report of powdery mildew caused by E. quercicola on Q. fabri and Q. robur in China. This work provides a foundation to protect Quercus plants against this fungal pathogen.

3.
PLoS One ; 18(10): e0292738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37819898

RESUMO

Aelia fieberi Scott, 1874 is a pest of crops. The mitogenome of A. fieberi (OL631608) was decoded by next-generation sequencing. The mitogenome, with 41.89% A, 31.70% T, 15.44% C and 10.97% G, is 15,471 bp in size. The phylogenetic tree showed that Asopinae and Phyllocephalinae were monophyletic; however, Pentatominae and Podopinae were not monophyletic, suggesting that the phylogenetic relationships of Pentatomoidae are complex and need revaluation and revision. Phytophagous bugs had a ~20-nucleotide longer in nad2 than predatory bugs. There were differences in amino acid sequence at six sites between phytophagous bugs and predatory bugs. The codon usage analysis indicated that frequently used codons used either A or T at the third position of the codon. The analysis of amino acid usage showed that leucine, isoleucine, serine, methionine, and phenylalanine were the most abundant in 53 species of Pentatomoidae. Thirteen protein-coding genes were evolving under purifying selection, cox1, and atp8 had the strongest and weakest purifying selection stress, respectively. Phytophagous bugs and predatory bugs had different evolutionary rates for eight genes. The mitogenomic information of A. fieberi could fill the knowledge gap for this important crop pest. The differences between phytophagous bugs and predatory bugs deepen our understanding of the effect of feeding habit on mitogenome.


Assuntos
Genoma Mitocondrial , Hemípteros , Heterópteros , Animais , Hemípteros/genética , Filogenia , Heterópteros/genética , Aminoácidos/genética , Genômica
4.
PLoS One ; 18(2): e0281597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36763628

RESUMO

Notobitus montanus Hsiao, 1963 is a major pest of bamboos. The mitogenome of N. montanus (ON052831) was decoded using next-generation sequencing. The mitogenome, with 42.26% A, 30.54% T, 16.54% C, and 10.65% G, is 16,209 bp in size. Codon usage analysis indicated that high frequently used codons used either A or T at the third position of the codon. Amino acid usage analysis showed that leucine 2, phenylalanine, isoleucine and tyrosine were the most abundant in 31 Coreoidea species. Thirteen protein-coding genes (PCGs) were evolving under purifying selection, nad5 and cox1 had the lowest and strongest purifying selection stress, respectively. Correlation analysis showed that evolutionary rate had positive correlation with A+T content. No tandem repeat was detected in the non-coding region of N. montanus. The phylogenetic tree showed that Alydidae and Coreidae were not monophyletic. However, the topology of phylogenetic trees, based on 13 PCGs, was in accordance with that of tree based on both mitochondrial and nuclear genes but not ultraconserved element loci or combination of 13 PCGs and two rRNAs. It seems that their relationships are complex, which need revaluation and revision. The mitogenomic information of N. montanus could shed light on the evolution of Coreoidea.


Assuntos
Genoma Mitocondrial , Hemípteros , Heterópteros , Animais , Hemípteros/genética , Filogenia , RNA de Transferência/genética , Heterópteros/genética , Códon/genética
5.
Mitochondrial DNA B Resour ; 7(8): 1438-1440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965648

RESUMO

The mitogenome of Liorhyssus hyalinus (Fabricius, 1794), decoded using next-generation sequencing, is the first report of Liorhyssus. The mitogenomic size was 16,355 bp with 41.99% A, 33.44% T, 14.53% C, and 10.05% G (OM328158). The phylogenetic tree, constructed with the amino acid sequences of 13 protein-coding genes, showed that L. hyalinus clustered together with other species in Rhopalidae, which supported the monophyly of each family in Pentatomomorpha.

6.
Front Microbiol ; 13: 1016608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620011

RESUMO

The gut microbiota is essential for the nutrition, growth, and adaptation of the host. Diestrammena japanica, a scavenger that provides energy to the cave ecosystem, is a keystone species in the karst cave in China. It inhabits every region of the cave, regardless of the amount of light. However, its morphology is dependent on the intensity of light. Whether the gut bacteria reflect its adaptation to the cave environment remains unknown. In this research, D. japanica was collected from the light region, weak light region, and dark region of three karst caves. The gut bacterial features of these individuals, including composition, diversity, potential metabolism function, and the co-occurrence network of their gut microbiota, were investigated based on 16S rRNA gene deep sequencing assay. The residues of amino acids in the ingluvies were also evaluated. In addition, we explored the contribution of gut bacteria to the cave adaptation of D. japanica from three various light zones. Findings showed that gut bacteria were made up of 245 operational taxonomic units (OTUs) from nine phyla, with Firmicutes being the most common phylum. Although the composition and diversity of the gut bacterial community of D. japanica were not significantly different among the three light regions, bacterial groups may serve different functions for D. japanica in differing light strengths. D. japanica has a lower rate of metabolism in cave habitats than in light regions. We infer that the majority of gut bacteria are likely engaged in nutrition and supplied D. japanica with essential amino acids. In addition, gut bacteria may play a role in adapting D. japanica's body size. Unveiling the features of the gut bacterial community of D. japanica would shed light on exploring the roles of gut bacteria in adapting hosts to karst cave environments.

7.
Mitochondrial DNA B Resour ; 5(1): 554-555, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33366643

RESUMO

The mitochondrial genome of Melanostoma orientale has been decoded by Illumina sequencing. The mitogenomic size is 16,229 bp with 40.96% A, 40.29% T, 10.60% C, and 8.15% G. It is encoded with 13 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNAs. The phylogenetic tree showed that 10 species of Syrphidae, belonging to six genera, were clustered into two clades. This is the first mitochondrial genome for the genus Melanostoma.

8.
Mitochondrial DNA B Resour ; 5(1): 687-688, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33366704

RESUMO

The mitochondrial genome of Eysarcoris guttigerus has been decoded using Illumina sequencing. The mitogenomic size is 15,368 bp with 42.97% A, 33.90% T, 13.22% C, and 9.90% G. It encoded 13 protein-coding genes, two ribosomal RNA, and 22 transfer RNAs. Phylogenetic tree showed that genus Eysarcoris had a closer relationship with the genus Carbula than the rest of 20 genera.

9.
Zool Res ; 38(2): 96-102, 2017 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-28409505

RESUMO

Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5-hydroxymethylcytosine (5hmC) ten-eleven translocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews (Tupaia belangeri chinensis). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Desmetilação do DNA , Tupaiidae/metabolismo , Animais , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia
10.
Proc Natl Acad Sci U S A ; 113(3): 584-9, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729868

RESUMO

Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276-induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony.


Assuntos
Gafanhotos/genética , MicroRNAs/genética , Oviposição/genética , Regulação para Cima/genética , Animais , Sequência de Bases , Feminino , Perfilação da Expressão Gênica , Genes de Insetos , Hibridização in Situ Fluorescente , MicroRNAs/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , Ovário/metabolismo , Óvulo/metabolismo , RNA/química , RNA/genética , Interferência de RNA , Sítios de Splice de RNA/genética
11.
Insect Biochem Mol Biol ; 56: 1-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446392

RESUMO

The migratory locust (Locusta migratoria) exhibits clear phenotypic plasticity depending on its population density. Previous studies have explored the molecular mechanisms of body colour, behavior, immunity, and metabolism between high population density gregarious (G) and low population density solitarious (S) locusts. However, the molecular mechanisms underlying differences in reproductive traits remain unknown. G locusts reach sexual maturation much faster and lay larger eggs compared with S locusts. The traits of G locusts decreased significantly with isolation, whereas those of S locusts increased with crowding. Analysis of gene expression in female adults indicated that syntaxin 1A (Syx1A) was expressed significantly higher in G locusts than in S locusts. After silencing Syx1A expression in G locusts by RNA interference (RNAi), their sexual maturity rate and progeny egg size changed towards those of S locusts. Similarly, increment in the traits of S locusts with crowding was blocked by Syx1A interference. Changes in the traits were also confirmed by decrease in the level of vitellogenin, which is regulated by Syx1A. In conclusion, plasticity of the sexual maturity rate and progeny egg size of G and S locusts, which is beneficial for locusts to adapt to environmental changes, is regulated by Syx1A.


Assuntos
Locusta migratoria/fisiologia , Densidade Demográfica , Maturidade Sexual/fisiologia , Sintaxina 1/metabolismo , Animais , Feminino , Expressão Gênica , Locusta migratoria/anatomia & histologia , Locusta migratoria/crescimento & desenvolvimento , Óvulo/fisiologia , Fenótipo , Interferência de RNA , Reprodução/fisiologia , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA