RESUMO
Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.
RESUMO
Halogenated organic pollutants (HOPs) are causing a significant environmental and human health crisis due to their high levels of toxicity, persistence and bioaccumulation. Urgent action is required to develop effective approaches for the reduction and reuse of HOPs. Whereas current strategies focus primarily on the degradation of HOPs, repurposing them is an alternative approach, albeit a challenging task. Here we discover that alkyl bromide can act as a catalyst for the transfer of chlorine using alkyl chloride as the chlorine source. We demonstrate that this approach has a wide substrate scope, and we successfully apply it to reuse HOPs that include dichlorodiphenyltrichloroethane, hexabromocyclododecane, chlorinated paraffins, chloromethyl polystyrene and poly(vinyl chloride) (PVC). Moreover, we show that the synthesis of essential non-steroidal anti-inflammatory drugs can be achieved using PVC and hexabromocyclododecane, and we demonstrate that PVC waste can be used directly as a chlorinating agent. Overall, this methodology offers a promising strategy for repurposing HOPs.
RESUMO
Background: Sepsis can disrupt immune regulation and lead to acute respiratory distress syndrome (ARDS) frequently. Remazolam, a fast-acting hypnotic drug with superior qualities compared to other drugs, was investigated for its potential protective effects against sepsis-induced ARDS. Methods: Forty Sprague-Dawley rats were randomly divided into four groups, including the sepsis + saline group, sham operation + saline group, sham operation + remazolam group and the sepsis + remazolam group. Lung tissues of rats were extracted for HE staining to assess lung damage, and the wet weight to dry weight (W/D) ratio was calculated. The levels of proinflammatory factors, anti-inflammatory factors, CD4+ and CD8+ T cells in peripheral blood, MDA, MPO, and ATP in the lung tissue were measured by using ELISA. Western blotting was performed to determine the protein expression of HMGB1 in lung tissues. Results: In comparison to the sham operation + saline and sham operation + remazolam groups, the sepsis + saline group exhibited significantly higher values for W/D ratio, lung damage score, IL-1ß, IL-6, TNF-α, PCT, CRP, MDP and MPO, while exhibiting lower levels of CD4+ and CD8+ T lymphocytes, PaO2, PCO2, and ATP. The rats in the sepsis + saline group displayed ruptured alveolar walls and evident interstitial lung edema. However, the rats in the sepsis + remazolam group showed improved alveolar structure. Furthermore, the HMGB1 protein expression in the sepsis + remazolam group was lower than the sepsis + saline group. Conclusion: Remazolam can alleviate the inflammatory response in infected rats, thereby alleviating lung injury and improving immune function, which may be attributed to the reduction in HMGB1 protein expression.
Assuntos
Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório , Sepse , Animais , Sepse/complicações , Sepse/imunologia , Sepse/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Ratos , Masculino , Proteína HMGB1/metabolismo , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismoRESUMO
Bridged benzazepine scaffolds, possessing unique structural and physicochemical activities, are widespread in various natural products and drugs. The construction of these skeletons often requires elaborate synthetic effort with low efficiency. Herein, we develop a simple and divergent approach for constructing various bridged benzazepines by a photocatalytic intermolecular dearomatization of naphthalene derivatives with readily available α-amino acids. The bridged motif is created via a cascade sequence involving photocatalytic 1,4-hydroaminoalkylation, alkene isomerization and cyclization. Interestingly, the diastereoselectivity can be regulated through different reaction modes in the cyclization step. Moreover, aminohydroxylation and its further bromination have also been demonstrated to access highly functionalized bridged benzazepines. Preliminary mechanistic studies have been performed to get insights into the mechanism. This method provides a divergent synthetic approach for construction of highly functionalized bridged benzazepines, which have been otherwise difficult to access.
RESUMO
The construction of multiple continuous fully substituted carbon centers, which serve as unique structural motif in natural products, is a challenging topic in organic synthesis. Herein, we report a hydrated [3+2] cyclotelomerization of butafulvenes to create contiguous fully substituted carbon backbone. In the presence of scandium triflate, all-carbon skeleton with spiro fused tricyclic ring can be constructed in high diastereoselectivity by utilizing butafulvene as the synthon. Mechanistic studies suggest that this atom-economic reaction probably proceeds through a synergistic process containing butafulvenes dimerization and nucleophilic attack by water. In addition, the tricyclic product can undergo a series of synthetic derivatizations, which highlights the potential applications of this strategy. The recyclability of Sc(OTf)3 has also been demonstrated to show its robust performance in this hydrated cyclotelomerization.
RESUMO
As a large number of organic compounds possessing two isoprene units, monoterpenes and monoterpenoids play important roles in pharmaceutical, cosmetic, agricultural, and food industries. In nature, monoterpenes are constructed from geranyl pyrophosphate (C10) via various transformations. Herein, the bulk C5 chemical-isoprene, is used for the creation of various monoterpenoids via a nucleophilic aromatization of monoterpenes under cascade catalysis of nickel and iodine. Drugs and oil mixtures from conifer and lemon can be convergently transformed to the desired monoterpenoid. Preliminary mechanistic studies are conducted to get insights about reaction pathway. Two types of cyclic monoterpenes can be respectively introduced onto two similar heterocycles via orthogonal C-H functionalization. And various hybrid terpenyl indoles are programmatically assembled from abundant C5 or C10 blocks. This work not only contributes a high chemo-, regio-, and redox-selective transformation of isoprene, but also provides a complementary approach for the creation of unnatural monoterpenoids.
RESUMO
A catalyst-free photosensitized strategy has been developed for regioselective imino functionalizations of alkenes via the formation of an EDA complex. This photo-induced protocol facilitates the construction of structurally diverse ß-imino sulfones and vinyl sulfones in moderate to high yields. Mechanistic studies reveal that the reaction is initiated with an intermolecular charge transfer between oximes and sulfinates, followed by fragmentation to generate a persistent iminyl radical and transient sulfonyl radical. This catalyst-free protocol also features excellent regioselectivity, broad functional group tolerance and mild reaction conditions. The late stage functionalization of natural product derived compounds and total synthesis of some bioactive molecules have been demonstrated to highlight the utility of this protocol. Meanwhile, the compatibility of different donors has proved the generality of this strategy.
RESUMO
We aimed to investigate the clinical efficacy of blood purification technology based on cytokine adsorption in the treatment of sepsis. Sixty patients with sepsis were randomly divided into control (n = 30) and experimental (n = 30) groups. Both groups were given routine treatment and continuous venovenous hemofiltration, and on this basis, the experimental group received acrylonitrile/sodium methacrylate (AN69ST) blood purification. The levels of C-reactive protein, procalcitonin, white blood cell count, albumin, platelets, total bilirubin, creatinine, lactic acid, and APACE II score, as well as secretion of inflammatory factors interleukin (IL)-6 and tumor necrosis factor (TNF-α) were compared. The hospitalization time, mechanical ventilation (MV) time, drug use time, and mortality were analyzed. After treatment, the secretion levels of IL-6 and TNF-α were decreased, and other indicators were significantly improved compared with those before treatment (P < 0.05), especially in the experimental group (P < 0.05). The hospitalization time, MV time, and drug use time in the experimental group were significantly lower than those of the control group (P < 0.05), and the mortality was lower than that in the control group (P < 0.05). In conclusion, blood purification technology based on cytokine adsorption can significantly improve various indicators of sepsis patients, reduce hospitalization time, reduce mortality, and improve the prognosis.
RESUMO
Metallocenes are privileged backbones in the fields of synthetic chemistry, catalysis, polymer science, etc. Direct C-H functionalization is undoubtedly the simplest approach for tuning the properties of metallocenes. However, owing to the presence of multiple identical C(sp2 )-H sites, this protocol often suffers from low reactivity and selectivity issues, especially for the regioselective synthesis of 1,3-difunctionalized metallocenes. Herein, an efficient iridium-catalyzed meta-selective C-H borylation of metallocenes is reported. With no need of preinstalled directing groups, this approach enables a rapid synthesis of various boronic esters based on benzoferrocenes, ferrocenes, ruthenocene, and related half sandwich complex. A broad range of electron-deficient and -rich functional groups are all compatible with the process. Notably, C-H borylation of benzoferrocenes takes place exclusively at the benzene ring, which is likely ascribed to the shielding effect of pentamethylcyclopentadiene. The synthetic utility is further demonstrated by easy scalability to gram quantities, the conversion of boron to heteroatoms including N3 , SePh, and OAc, as well as diverse cross-coupling reactions.
RESUMO
The formation of one unavoidable byproduct in traditional disproportionation reactions limits their applications in synthesis. Inspired by convergent disproportionation, we develop an iodine-induced cyclization and oxidation of allylic alcohols to produce highly functionalized bicyclo[3.2.1]octanes through creation of six new bonds. Guided by the mechanism, we elaborated a variety of other bicyclo[3.2.1]octanes bearing distinct groups with presynthesized dienes and enones as the starting materials. This work provides a divergent access to bicyclo[3.2.1]octane frameworks.
RESUMO
Developing efficient strategies to realize divergent arylation of dienes has been a long-standing synthetic challenge. Herein, a nickel catalyzed divergent Mizoroki-Heck reaction of 1,3-dienes has been demonstrated through the regulation of ligands and additives. In the presence of Mn/NEt3, the Mizoroki-Heck reaction of dienes delivers linear products under Ni(dppe)Cl2 catalysis in high regio- and stereoselectivities. With the help of catalytic amount of organoboron and NaF, the use of bulky ligand IPr diverts the selectivity from linear products to branched products. Highly aryl-substituted compounds can be transformed from dispersive Mizoroki-Heck products programmatically. Preliminary experimental studies are carried out to elucidate the role of additives.
RESUMO
The catalytic bis-allylation of alkynes is an important but challenging protocol to construct all-carbon tetra-substituted alkenes. Particularly, the catalytic unsymmetrical bis-allylation of alkynes remains as an underexplored task to date. We herein report an unprecedented unsymmetrical bis-allylation by simultaneously utilizing electrophilic trifluoromethyl alkene and nucleophilic allylboronate as the allylic reagents. With the aid of robust Ni0 /NHC catalysis, valuable skipped trienes can be obtained in high regio- and stereo-selectivities under mild conditions. Mechanistic studies indicate that the reaction may proceed through a ß-fluorine elimination of a nickelacycle followed by a transmetalation step with allylboronate. The present method exhibits a good tolerance of various functional groups. Besides, the skipped triene products can undergo an array of elaborate transformations, which highlights the potential applications of this strategy.
RESUMO
Skeletal reorganization reactions have emerged as an intriguing tool for converting readily available compounds into complicated molecules inaccessible by traditional methods. Herein, we report a unique skeleton-reorganizing coupling reaction of cycloheptatriene and cycloalkenones with amines. In the presence of Rh/acid catalysis, cycloheptatriene can selectively couple with anilines to deliver fused 1,2-dihydroquinoline products. Mechanistic studies indicate that the retro-Mannich type ring-opening and subsequent intramolecular Povarov reaction account for the ring reorganization. Our mechanistic studies also revealed that skeleton-reorganizing amination between anilines and cycloalkenones can be achieved with acid. The synthetic utilization of this skeleton-reorganizing coupling reaction was showcased with a gram-scale reaction, synthetic derivatizations, and the late-stage modification of commercial drugs.
Assuntos
Aminas , Compostos de Anilina , Aminação , Esqueleto , CatáliseRESUMO
Background: The incidence of sepsis has been steadily increasing worldwide, and the heart is one of the target organs that can be easily damaged by sepsis. At present, antibiotics and organ function support are the main treatment options for sepsis and multiple system organ dysfunction, but are still under investigation. Methods: Fifty rats were randomly divided into the sham operation group, sepsis group, sivelestat sodium low-dose (L) group (administered with sivelestat sodium 1.6 mg/kg), sivelestat sodium middle-dose (M) group (administered with sivelestat sodium 4.8 mg/kg), and sivelestat sodium high-dose (H) group (administered with sivelestat sodium 10 mg/kg). Morphological changes of myocardial cells and the distribution of extracellular signal-regulated kinase (ERK)1/2 proteins were observed by light microscope. Serum troponin-T, creatine kinase isoenzyme MB, brain natriuretic peptide, interleukin (IL)-6, tumor necrosis factor-α, and IL-1ß levels and changes in cardiac function indicators were measured. The protein expressions of Bax, Bcl-2, and ERK1/2 were detected by Western blotting. Results: Compared with the sham operation group, the release of inflammatory factors in the sepsis group increased; the protein expressions of Bax, Bcl-2, and ERK1/2 increased; left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), and maximum rate of LVP rise (+dp/dtmax) level decreased, whereas -dp/dtmax increased. In the sivelestat sodium groups, the release of inflammatory factors decreased; Bax expression decreased, whereas Bcl-2 and ERK1/2 protein expressions increased; LVSP, LVEDP, and +dp/dtmax increased, whereas -dp/dtmax decreased. In addition, all of these changes occurred in a dose-dependent manner. Conclusions: Sivelestat sodium can effectively lower the expressions of inflammatory factors and improve cardiac function. It can act on the ERK1/2 signaling pathway to exert its cardiomyocyte-protective effect, and the activation of this signaling pathway can offer potential treatment sites for septic myocarditis.
RESUMO
By complementing traditional transition metal catalysis, photoinduced catalysis has emerged as a versatile and sustainable way to achieve carbon-heteroatom bond formation. This work discloses a visible-light-induced reaction for the formation of a C-S bond from aryl halides and inorganic sulfuration agents via electron donor-acceptor (EDA) complex photocatalysis. Divergent formations of organic sulfide and disulfide have been demonstrated under mild conditions. Preliminary mechanistic studies suggest that visible-light-induced intracomplex charge transfer within the monosulfide-anion-containing EDA complex permits the C-S bond construction reactivity.
RESUMO
Butafulvene is a constitutional isomer of benzene, comprising a cyclobutene skeleton bearing two exocyclic conjugated methylene units. As a result of the intrinsic high strain energy and anti-aromaticity, the preparation of butafulvene compounds has been a fundamental issue for the development of butafulvene chemistry. Here an efficient palladium-catalysed coupling protocol involving propargylic compounds has been developed, providing a solid and versatile strategy for the rapid assembly of symmetric butafulvene derivatives. Based on mechanistic studies, two complementary mechanisms, both involving palladium catalysis, have been confirmed. With the mechanism unveiled, the synthesis of non-symmetric butafulvenes has also been achieved. Advantages of this strategy include tolerance to a wide range of propargylic molecules, mild reaction conditions, simple catalytic systems and easy scalability. The synthetic potential of the products as platform molecules for cyclobutene derivatives has also been demonstrated.
Assuntos
Benzeno , Paládio , Catálise , Paládio/químicaRESUMO
Objective: The aim of this study was to observe the efficacy and mechanism of Draba scabra in sepsis myocarditis. Methods: The efficacy and pathways of action of Draba scabra on septic myocarditis were evaluated by making a rat model of sepsis with appendix perforation, using Draba scabra for pharmacological intervention, and measuring serum inflammatory factors, cardiac function indexes and parameters, and P38 protein expression in each group of rats, respectively. Results: The inflammatory factor level, apoptotic index of cardiomyocytes, and P38-MARK protein were significantly higher, while the cardiac function index and hemodynamic index were significantly decreased in group B, while the opposite was true in group E. The treatment was also found to be dose-dependent. Conclusion: Draba scabra pretreatment effectively reduces the inflammatory response and improves hemodynamic indexes in septic rats. The mechanism may be via the P38-MARK pathway to protect the myocardium.
RESUMO
Metallocenes are privileged backbones for synthesis and catalysis. However, the direct dehydrogenative C-H functionalization of unsymmetric metallocenes suffers from reactivity and selectivity issues. Herein, we report an electrochemically driven regioselective C-H phosphorylation of group 8 metallocenes. Mechanistic investigations indicate this dehydrogenative cross coupling occurs through an electrophilic radical substitution of the metallocene with a phosphoryl radical, facilitated by the metallocene itself. This work not only offers an efficient and divergent synthesis of phosphorylated metallocenes, but also provides a guide to interpret the reactivity and regioselectivity for the C-H functionalization of unsymmetric metallocenes.
RESUMO
The recent surge in the applications of deuterated drug candidates has rendered an urgent need for diverse deuterium labeling techniques. Herein, an efficient Rh-catalyzed deuterated Tsuji-Wilkinson decarbonylation of naturally available aldehydes with D2O is developed. In this reaction, D2O not only acts as a deuterated reagent and solvent but also promotes Rh-catalyzed decarbonylation. In addition, decarbonylative strategies for the synthesis of terminal monodeuterated alkenes from α,ß-unsaturated aldehydes are within reach.
Assuntos
Ródio , Aldeídos , Alcenos , Catálise , Óxido de DeutérioRESUMO
In nature, prenylation and geranylation are two important metabolic processes for the creation of hemiterpenoids and monoterpenoids under enzyme catalysis. Herein, we have demonstrated bioinspired unnatural prenylation and geranylation of oxindoles using the basic industrial feedstock isoprene through ligand regulation under Pd catalysis. Pentenylated oxindoles (with C5 added) were attained with high selectivity when using a bisphosphine ligand, whereas upon switching to a monophosphine ligand, selectivity toward geranylated oxindoles (with C10 added) was achieved. Moreover, the head-to-head product could be further isomerized to an internal skipped diene under Pd-H catalysis. No stoichiometric by-product was formed in the process.