Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(38): 9586-9591, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30185560

RESUMO

The yeast genome becomes unstable during stress, which often results in adaptive aneuploidy, allowing rapid activation of protective mechanisms that restore cellular homeostasis. In this study, we performed a genetic screen in Saccharomyces cerevisiae to identify genome adaptations that confer resistance to tunicamycin-induced endoplasmic reticulum (ER) stress. Whole-genome sequencing of tunicamycin-resistant mutants revealed that ER stress resistance correlated significantly with gains of chromosomes II and XIII. We found that chromosome duplications allow adaptation of yeast cells to ER stress independently of the unfolded protein response, and that the gain of an extra copy of chromosome II alone is sufficient to induce protection from tunicamycin. Moreover, the protective effect of disomic chromosomes can be recapitulated by overexpression of several genes located on chromosome II. Among these genes, overexpression of UDP-N-acetylglucosamine-1-P transferase (ALG7), a subunit of the 20S proteasome (PRE7), and YBR085C-A induced tunicamycin resistance in wild-type cells, whereas deletion of all three genes completely reversed the tunicamycin-resistance phenotype. Together, our data demonstrate that aneuploidy plays a critical role in adaptation to ER stress by increasing the copy number of ER stress protective genes. While aneuploidy itself leads to proteotoxic stress, the gene-specific effects of chromosome II aneuploidy counteract the negative effect resulting in improved protein folding.


Assuntos
Adaptação Fisiológica/genética , Aneuploidia , Estresse do Retículo Endoplasmático/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Saccharomyces cerevisiae/fisiologia , Cromossomos Fúngicos/genética , Farmacorresistência Fúngica/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/fisiologia
2.
J Vis Exp ; (130)2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29286414

RESUMO

Translation of mRNA into proteins is a complex process involving several layers of regulation. It is often assumed that changes in mRNA transcription reflect changes in protein synthesis, but many exceptions have been observed. Recently, a technique called ribosome profiling (or Ribo-Seq) has emerged as a powerful method that allows identification, with high accuracy, which regions of mRNA are translated into proteins and quantification of translation at the genome-wide level. Here, we present a generalized protocol for genome-wide quantification of translation using Ribo-Seq in budding yeast. In addition, combining Ribo-Seq data with mRNA abundance measurements allows us to simultaneously quantify translation efficiency of thousands of mRNA transcripts in the same sample and compare changes in these parameters in response to experimental manipulations or in different physiological states. We describe a detailed protocol for generation of ribosome footprints using nuclease digestion, isolation of intact ribosome-footprint complexes via sucrose gradient fractionation, and preparation of DNA libraries for deep sequencing along with appropriate quality controls necessary to ensure accurate analysis of in vivo translation.


Assuntos
Biblioteca Gênica , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , DNA Fúngico/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Genoma Microbiano , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
3.
PLoS One ; 9(4): e94468, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732310

RESUMO

Candida albicans is a ubiquitous fungus, which can cause very serious and sometimes life-threatening infections in susceptible patients. We used Caenorhabditis elegans as a model host to screen a library of C. albicans mutants for decreased virulence and identified SPT20 as important for virulence. The transcription co-activator SPT20 was identified originally as a suppressor of Ty and solo δ insertion mutations, which can cause transcription defects in Saccharomyces cerevisiae. It is resistant to the toxicity caused by overexpression of GAL4-VP16. We constructed a C. albicans spt20Δ/Δ mutant and found the spt20Δ/Δ strain was significantly less virulent than the wild-type strain SC5314 in C. elegans (p < 0.0001), Galleria mellonella (p < 0.01) and mice (p < 0.001). Morphologically, spt20Δ/Δ mutant cells demonstrated a "snow-flake" shape and clustered together; prolonged culture times resulted in increased size of the cluster. The clustered morphology was associated with defects in nuclei distribution, as the nuclei were not observed in many cellular compartments. In addition, the C. albicans spt20Δ/Δ mutant resulted in defects in hyphae and biofilm formation (compared to the wild-type strain, p < 0.05), and sensitivity to cell wall and osmotic stressors, and to antifungal agents. Thus our study demonstrated a role of C. albicans SPT20 in overall morphology and distribution of nuclear material, which may cause the defects in filamentation and biofilm formation directly when this gene is deleted.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Animais , Antifúngicos/farmacologia , Benzenossulfonatos/metabolismo , Biofilmes/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Candidíase/microbiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Modelos Animais de Doenças , Hifas/efeitos dos fármacos , Hifas/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Mutação/genética , Transporte Proteico/efeitos dos fármacos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA