Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Biotechnol Biofuels ; 10: 172, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680479

RESUMO

BACKGROUND: Saccharum species such as sugarcane and energy cane are key players in the expanding bioeconomy for sugars, bioenergy, and production of high-value proteins. Genomic tools such as culm-regulated promoters would be of great value in terms of improving biomass characteristics through enhanced carbon metabolism for sugar accumulation and/or fiber content for biofuel feedstock. Unlike the situation in dicots, monocot promoters currently used are limited and mostly derived from highly expressed constitutive plant genes and viruses. In this study, a novel promoter region of Sugarcane bacilliform virus (SCBV; genus Badnavirus, family Caulimoviridae), SCBV21 was cloned and mapped by deletion analysis and functionally characterized transiently in monocot and dicot species and stably in sugarcane. RESULTS: In silico analysis of SCBV21 [1816 base pair (bp)] identified two putative promoter regions (PPR1 and PPR2) with transcription start sites (TSS1 and TSS2) and two TATA-boxes (TATAAAT and ATATAA), and several vascular-specific and regulatory elements. Deletion analysis revealed that the 710 bp region spanning PPR2 (with TSS2 and ATATAA) at the 3' end of SCBV21 retained the full promoter activity in both dicots and monocots, as shown by transient expression of the enhanced yellow fluorescent protein (EYFP) gene. In sugarcane young leaf segments, SCBV21 directed a 1.8- and 2.4-fold higher transient EYFP expression than the common maize ubiquitin 1 (Ubi1) and Cauliflower mosaic virus 35S promoters, respectively. In transgenic sugarcane, SCBV21 conferred a preferential expression of the ß-glucuronidase (GUS) gene in leaves and culms and specifically in the culm storage parenchyma surrounding the vascular bundle and in vascular phloem cells. Among the transgenic events and tissues characterized in this study, the SCBV21 promoter frequently produced higher GUS activity than the Ubi1 or 35S promoters in a manner that was not obviously correlated with the transgene copy number. CONCLUSIONS: The newly developed plant viral SCBV21 promoter is distinct from the few existing SCBV promoters in its sequence and expression pattern. The potential of SCBV21 as a tissue-regulated promoter with a strong activity in the culm vascular bundle and its storage parenchyma makes it useful in sugarcane engineering for improved carbon metabolism, increased bioenergy production, and enhanced stress tolerance.

3.
Biomed Res Int ; 2016: 2681816, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725937

RESUMO

Ratoon stunting disease (RSD) of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx). A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR) assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR) and a fluorogenic probe (Pat1-QP) targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7%) of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174) were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174) were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.


Assuntos
Bebidas/microbiologia , Micrococcaceae/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saccharum/microbiologia , Fluorescência , Micrococcaceae/química , Padrões de Referência , Sensibilidade e Especificidade
4.
Arch Virol ; 161(6): 1493-503, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26973230

RESUMO

Sugarcane streak mosaic virus (SCSMV), an economically important causal agent of mosaic disease of sugarcane, is a member of the newly created genus Poacevirus in the family Potyviridae. In this study, we report the molecular characterization of three new SCSMV isolates from China (YN-YZ211 and HN-YZ49) and Myanmar (MYA-Formosa) and their genetic variation and phylogenetic relationship to SCSMV isolates from Asia and the type members of the family Potyviridae. The complete genome of each of the three isolates was determined to be 9781 nucleotides (nt) in size, excluding the 3' poly(A) tail. Phylogenetic analysis of the complete polyprotein amino acid (aa) sequences (3130 aa) revealed that all SCSMV isolates clustered into a phylogroup specific to the genus Poacevirus and formed two distinct clades designated as group I and group II. Isolates YN-YZ211, HN-YZ49 and MYA-Formosa clustered into group I, sharing 96.8-99.5 % and 98.9-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, among themselves and 81.2-98.8 % and 94.0-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, with the corresponding sequences of seven Asian SCSMV isolates. Population genetic analysis revealed greater between-group (0.190 ± 0.004) than within-group (group I = 0.025 ± 0.001 and group II = 0.071 ± 0.003) evolutionary divergence values, further supporting the results of the phylogenetic analysis. Further analysis indicated that natural selection might have contributed to the evolution of isolates belonging to the two identified SCSMV clades, with infrequent genetic exchanges occurring between them over time. These findings provide a comprehensive analysis of the population genetic structure and driving forces for the evolution of SCSMV with implications for global exchange of sugarcane germplasm.


Assuntos
Potyviridae/genética , Saccharum/virologia , Ásia , DNA Viral/genética , Evolução Molecular , Variação Genética , Genoma Viral , Filogenia , Doenças das Plantas/virologia , Potyviridae/classificação , Potyviridae/isolamento & purificação , Recombinação Genética
5.
Biomed Res Int ; 2015: 569131, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26185758

RESUMO

Sugarcane mosaic disease is caused by the Sugarcane streak mosaic virus (SCSMV; genus Poacevirus, family Potyviridae) which is common in some Asian countries. Here, we established a protocol of a one-step real-time quantitative reverse transcription PCR (real-time qRT-PCR) using the TaqMan probe for the detection of SCSMV in sugarcane. Primers and probes were designed within the conserved region of the SCSMV coat protein (CP) gene sequences. Standard single-stranded RNA (ssRNA) generated by PCR-based gene transcripts of recombinant pGEM-CP plasmid in vitro and total RNA extracted from SCSMV-infected sugarcane were used as templates of qRT-PCR. We further performed a sensitivity assay to show that the detection limit of the assay was 100 copies of ssRNA and 2 pg of total RNA with good reproducibility. The values obtained were approximately 100-fold more sensitive than those of the conventional RT-PCR. A higher incidence (68.6%) of SCSMV infection was detected by qRT-PCR than that (48.6%) with conventional RT-PCR in samples showing mosaic symptoms. SCSMV-free samples were verified by infection with Sugarcane mosaic virus (SCMV) or Sorghum mosaic virus (SrMV) or a combination of both. The developed qRT-PCR assay may become an alternative molecular tool for an economical, rapid, and efficient detection and quantification of SCSMV.


Assuntos
Vírus do Mosaico/genética , Vírus do Mosaico/isolamento & purificação , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saccharum/virologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Arch Virol ; 159(6): 1421-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24395076

RESUMO

Sugarcane yellow leaf virus (SCYLV; genus Polerovirus, family Luteoviridae) is a recombinant virus associated with yellow leaf disease, a serious threat to sugarcane in China and worldwide. Among the nine known SCYLV genotypes existing worldwide, COL, HAW, REU, IND, CHN1, CHN2, BRA, CUB and PER, the last five have been reported in China. In this study, the complete genome sequences (5,880 nt) of GZ-GZ18 and HN-CP502 isolates from the Chinese provinces of Guizhou and Hainan, respectively, were cloned, sequenced and characterized. Phylogenetic analysis showed that, among 29 SCYLV isolates described worldwide, the two Chinese isolates clustered together into an independent clade based on the near-complete genome nucleotide (ORF0-ORF5) or amino acid sequences of individual genes, except for the MP protein (ORF4). We propose that the two isolates represent a novel genotype, CHN3, diverging from other genotypes by 1.7-13.6 % nucleotide differences in ORF0-ORF5, and 2.7-28.1 %, 1.8-20.4 %, 0.5-5.1 % and 2.7-15.9 % amino acid differences in P0 (ORF0), RdRp (RNA-dependent RNA polymerase) (ORF1+2), CP (coat protein) (ORF3) and RT (readthrough protein) (ORF3+5), respectively. CHN3 was closely related to the BRA, HAW and PER genotypes, differing by 1.7-3.8 % in the near-complete genome nucleotide sequence. Recombination analysis further identified CHN3 as a new recombinant strain, arising from the major parent CHN-HN1 and the minor parent CHN-GD-WY19. Recombination breakpoints were distributed mostly within the RdRp region in CHN3 and the four significant recombinant genotypes, IND, REU, CUB and BRA. Recombination is considered to contribute significantly to the evolution and emergence of such new SCYLV variants.


Assuntos
Genoma Viral , Luteoviridae/classificação , Luteoviridae/genética , Doenças das Plantas/virologia , RNA Viral/genética , Saccharum/virologia , Análise de Sequência de DNA , China , Análise por Conglomerados , Genótipo , Luteoviridae/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Recombinação Genética
7.
Virus Genes ; 45(2): 340-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22752564

RESUMO

Sugarcane yellow leaf virus (SCYLV) (genus Polerovirus, family Luteoviridae), the causal agent of sugarcane yellow leaf disease (YLD), was first detected in China in 2006. To assess the distribution of SCYLV in the major sugarcane-growing Chinese provinces, leaf samples from 22 sugarcane clones (Saccharum spp. hybrid) showing YLD symptoms were collected and analyzed for infection by the virus using reverse transcription PCR (RT-PCR), quantitative RT-PCR, and immunological assays. A complete genomic sequence (5,879 nt) of the Chinese SCYLV isolate CHN-FJ1 and partial genomic sequences (2,915 nt) of 13 other Chinese SCYLV isolates from this study were amplified, cloned, and sequenced. The genomic sequence of the CHN-FJ1 isolate was found to share a high identity (98.4-99.1 %) with those of the Brazilian (BRA) genotype isolates and a low identity (86.5-86.9 %) with those of the CHN1 and Cuban (CUB) genotype isolates. The genetic diversity of these 14 Chinese SCYLV isolates was assessed along with that of 29 SCYLV isolates of worldwide origin reported in the GenBank database, based on the full or partial genomic sequence. Phylogenetic analysis demonstrated that all the 14 Chinese SCYLV isolates clustered into one large group with the BRA genotype and 12 other reported SCYLV isolates. In addition, five reported Chinese SCYLV isolates were grouped with the Peruvian (PER), CHN1 and CUB genotypes. We therefore speculated that at least four SCYLV genotypes, BRA, PER, CHN1, and CUB, are associated with YLD in China. Interestingly, a 39-nt deletion was detected in the sequence of the CHN-GD3 isolate, in the middle of the ORF1 region adjacent to the overlap between ORF1 and ORF2. This location is known to be one of the recombination breakpoints in the Luteoviridae family.


Assuntos
Luteoviridae/genética , Luteoviridae/isolamento & purificação , Filogenia , RNA Viral/genética , Saccharum/virologia , China , Análise por Conglomerados , Genoma Viral , Luteoviridae/classificação , Dados de Sequência Molecular , Fases de Leitura Aberta , Doenças das Plantas/virologia , Folhas de Planta/virologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
8.
J Biomed Biotechnol ; 2011: 160934, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21792273

RESUMO

Differential gene expression in sugarcane during sugarcane-Ustilago scitaminea interaction was conducted in a smut-resistant genotype. Using cDNA-AFLP along with silver staining, a total of 136 transcript-derived fragments (TDFs) were found to be differentially expressed in response to challenge by U. scitaminea. Forty TDFs, 34 newly induced plus six with obvious upregulated expression after infection, were sequenced and validated by RT-PCR analysis. These results demonstrated that the expression of 37 out of these TDFs in RT-PCR analysis was consistent with that in cDNA-AFLP analysis. Based on BlastX in NCBI, 28 TDFs were assumed to function in sugarcane under U. scitaminea stress. Analysis of expression profile of three TDFs revealed that they responded differently after infection with U. scitaminea, and the transcription was significantly enhanced. The response of two TDFs, SUC06 and SUC09, occurred before that of SUC10. This study enriches our knowledge of the molecular basis for sugarcane response to U. scitaminea infection.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Saccharum/genética , Ustilago/fisiologia , DNA Complementar/genética , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Genes de Plantas , Interações Hospedeiro-Patógeno , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharum/microbiologia , Saccharum/fisiologia
9.
J Integr Plant Biol ; 50(3): 375-83, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18713371

RESUMO

Single pollen grain polymerase chain reaction (PCR) has succeeded in several species, however only limited numbers of pollen grains were involved due to difficulties in pollen isolation and lysis. This has limited its application in genetic analysis and mapping studies in plants. A high-throughput (HT) procedure for collecting and detecting genetic variation in a large number of individual pollen grains by PCR is reported. The HT procedure involved the collection of individual pollen grains by a pair of special forceps and the lysis of pollen grains in a heated alkali/detergent solution followed by neutralization with a tris-ethylenediamine tetraacetic acid (TE) buffer. These resulting template solutions yielded PCR reactions involving the 5S ribosomal RNA intergenic spacers, randomly amplified polymorphic DNA, and simple sequence repeats markers. Using this procedure, one person with experience could collect and process up to 288 single pollen grain PCR reactions per day. The method worked well on sugarcane, corn, Miscanthus spp., snap bean, sorghum, and tomato. The ability to collect and conduct PCR on individual pollen grains on a large scale offers a new approach to genetic analyses and mapping studies in an easily controllable environment with a considerable cost reduction. The method will also significantly benefit studies in species that are difficult subjects for classical genetic research.


Assuntos
Plantas/genética , Pólen/citologia , Reação em Cadeia da Polimerase/métodos , Sobrevivência Celular , Etídio , Temperatura Alta , Células Vegetais , Pólen/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Reprodutibilidade dos Testes , Soluções , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA