Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 13(1): e031353, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38156523

RESUMO

BACKGROUND: Chemotherapy-induced cardiovascular disease is a growing concern in the elderly population who have survived cancer, yet the underlying mechanism remains poorly understood. We investigated the role of ALKBH5 (AlkB homolog 5), a primary N6-methyladenosine (m6A) demethylase, and its involvement in m6A methylation-mediated regulation of targets in aging-associated doxorubicin-induced cardiotoxicity. METHODS AND RESULTS: To validate the relationship between doxorubicin-induced cardiotoxicity and aging, we established young and old male mouse models. ALKBH5 expression was modulated through adeno-associated virus 9 (in vivo), Lentivirus, and siRNAs (in vitro) to examine its impact on cardiomyocyte m6A modification, doxorubicin-induced cardiac dysfunction, and remodeling. We performed mRNA sequencing, methylated RNA immunoprecipitation sequencing, and molecular assays to unravel the mechanism of ALKBH5-m6A modification in doxorubicin-induced cardiotoxicity. Our data revealed an age-dependent increase in doxorubicin-induced cardiac dysfunction, remodeling, and injury. ALKBH5 expression was elevated in aging mouse hearts, leading to reduced global m6A modification levels. Through mRNA sequencing and methylated RNA immunoprecipitation sequencing analyses, we identified ARID2 (AT-rich interaction domain 2) as the downstream effector of ALKBH5-m6A modulation in cardiomyocytes. Further investigations revealed that ARID2 modulates DNA damage response and enhances doxorubicin-induced cardiomyocyte apoptosis. CONCLUSIONS: Our findings provide insights into the role of ALKBH5-m6A modification in modulating doxorubicin-induced cardiac dysfunction, remodeling, and cardiomyocyte apoptosis in male mice. These results highlight the potential of ALKBH5-targeted treatments for elderly patients with cancer in clinical settings.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Cardiotoxicidade , Animais , Humanos , Masculino , Camundongos , Envelhecimento , Homólogo AlkB 5 da RNA Desmetilase/genética , Apoptose , Doxorrubicina/toxicidade , Miócitos Cardíacos , RNA Mensageiro , RNA Interferente Pequeno
2.
Biochem Biophys Res Commun ; 532(4): 640-646, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32912629

RESUMO

Endothelial cells injury and pro-inflammation cytokines release are the initial steps of hyperhomocysteinemia (HHcy)-associated vascular inflammation. Pyroptosis is a newly identified pro-inflammation form of programmed cell death, causing cell lysis and IL-1ß release, and characterized by the caspases-induced cleavage of its effector molecule gasdermins (GSDMs). However, the effect of homocysteine (Hcy) on endothelial cells pyroptosis and the underlying mechanisms have not been fully defined. We have previously reported that Hcy induces vascular endothelial inflammation accompanied by the increase of high mobility group box-1 protein (HMGB1) and lysosomal cysteine protease cathepsin V in endothelial cells, and other studies have shown that HMGB1 or cathepsins are involved in activation of NLRP3 inflammasome and caspase-1. Here, we investigated the role of HMGB1 and cathepsin V in the process of Hcy-induced pyroptosis. We observed an increase in plasma IL-1ß levels in HHcy patients and mice models, cathepsin V inhibitor reduced the plasma IL-1ß levels and cleavage of GSDMD full-length into GSDMD N-terminal in the thoracic aorta of hyperhomocysteinemia mice. Using cultured HUVECs, we observed that Hcy promoted GSDMD N-terminal expression, silencing GSDMD or HMGB1 rescued Hcy-induced pyroptosis. HMGB1 also increased GSDMD N-terminal expression, and silencing cathepsin V reversed HMGB1-induced pyroptosis. HMGB1 could increase lysosome permeability, and silencing cathepsin V attenuated HMGB1-induced activation of caspase-1. In conclusion, this study has delineated a novel mechanism that HMGB1 mediated Hcy-induced endothelial cells pyroptosis partly via cathepsin V-dependent pathway.


Assuntos
Catepsinas/fisiologia , Cisteína Endopeptidases/fisiologia , Endotélio Vascular/citologia , Proteína HMGB1/fisiologia , Homocisteína/fisiologia , Piroptose , Idoso , Animais , Caspase 1/metabolismo , Linhagem Celular , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/metabolismo , Interleucina-1beta/sangue , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas de Ligação a Fosfato/metabolismo , Artérias Torácicas/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 316(5): H1039-H1046, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30767669

RESUMO

Endothelial inflammation plays an important role in hyperhomocysteinemia (HHcy)-associated vascular diseases. High mobility group box 1 (HMGB1) is a pro-inflammatory danger molecule produced by endothelial cells. However, whether HMGB1 is involved in vascular endothelial inflammation of HHcy is poorly understood. Neuropilin-1 (NRP1) mediates inflammatory response and activates mitogen-activated protein kinases (MAPKs) pathway that has been reported to be involved in regulation of HMGB1. The aim of this study was to determine the alteration of HMGB1 in HHcy, and the role of NRP1 in regulation of endothelial HMGB1 under high homocysteine (Hcy) condition. In the present study, we first observed that the plasma level of HMGB1 was elevated in HHcy patients and an experimental rat model, and increased HMGB1 was also observed in the thoracic aorta of an HHcy rat model. HMGB1 was induced by Hcy accompanied with upregulated NRP1 in vascular endothelial cells. Overexpression of NRP1 promoted expression and secretion of HMGB1 and endothelial inflammation; knockdown of NRP1 inhibited HMGB1 and endothelial inflammation induced by Hcy, which partially regulated through p38 MAPK pathway. Furthermore, NRP1 inhibitor ATWLPPR reduced plasma HMGB1 level and expression of HMGB1 in the thoracic aorta of HHcy rats. In conclusion, our data suggested that Hcy requires NRP1 to regulate expression and secretion of HMGB1. The present study provides the evidence for inhibition of NRP1 and HMGB1 to be the novel therapeutic targets of vascular endothelial inflammation in HHcy in the future. NEW & NOTEWORTHY This study shows for the first time to our knowledge that the plasma level of high mobility group box 1 (HMGB1) is elevated in hyperhomocysteinemia (HHcy) patients, and homocysteine promotes expression and secretion of HMGB1 partially regulated by neuropilin-1 in endothelial cells, which is involved in endothelial inflammation. Most importantly, these new findings will provide a potential therapeutic strategy for vascular endothelial inflammation in HHcy.


Assuntos
Proteína HMGB1/metabolismo , Homocisteína/sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hiper-Homocisteinemia/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Neuropilina-1/metabolismo , Adulto , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/genética , Inflamação/sangue , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Neuropilina-1/genética , Ratos Sprague-Dawley , Transdução de Sinais , Células THP-1 , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Am J Med Sci ; 356(2): 168-176, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30219159

RESUMO

BACKGROUND: This study aimed to investigate the interactions between silent information regulator 1 (SIRT1) and mammalian target of rapamycin (mTOR) in intraplaque angiogenesis and their potential mechanisms through in vivo and in vitro studies. METHODS: An atherosclerosis model was established in 12 rabbits on a high-cholesterol diet. The rabbits were equally divided into 3 groups: a control group (high-lipid diet), RAP group (high-lipid diet supplemented with rapamycin) and RAP + NAM group (high-lipid diet supplemented with rapamycin and nicotinamide). At the end of 4 weeks, the area of plaques in the aorta was determined and the protein expression of CD31 and vascular endothelial growth factor (VEGF) was detected through hematoxylin and eosin staining and immunohistochemical staining, respectively. For in vitro study, a hypoxia model was established in human umbilical vein endothelial cells (HUVECs) by using the chemical method (CoCl2). The MTT assay, scratch assay and tube formation assay were performed to evaluate the proliferation and angiogenesis abilities of HUVECs. Reverse transcription polymerase chain reaction was used to examine the mRNA levels of SIRT1, hypoxia-inducible factor-1α (HIF-1α), mTOR and p70 ribosomal S6 kinase (p70S6K). Western blotting was used to examine the protein levels of SIRT1, HIF-1α, mTOR, p-mTOR, p-raptor and p-p70S6K. RESULTS: The results of the in vivo study indicated a significant inhibitory effect of rapamycin on plaque size and intraplaque angiogenesis (0.05 ± 0.02mm2 versus 5.44 ± 0.50mm2, P < 0.05). This effect was attenuated by nicotinamide (0.76 ± 0.15mm2 versus 0.05 ± 0.02mm2, P < 0.05). Compared with the RAP group, CD31- and VEGF-positive vessels were abundant in the RAP + NAM group. The RAP group showed lower expression of p-mTOR, p-p70S6K and HIF-1α than did the control group (P < 0.05), whereas the RAP + NAM group showed slightly higher expression of these factors than did the RAP group (P < 0.05). Furthermore, in vitro studies revealed that the inhibitory effect of rapamycin on the angiogenic ability of HUVECs and its significant inhibitory effects on the protein level of HIF-1α and the phosphorylation of proteins involved in the mTORC1 pathway, including mTOR, raptor and p70S6K (P < 0.05), were enhanced by cotreatment with SRT1720 and rapamycin (P < 0.05). In contrast to mTOR and SIRT1, the mRNA levels of p70S6K and HIF-1α were reduced by rapamycin (P < 0.05) and further reduced by cotreatment with SRT1720 and rapamycin. CONCLUSIONS: The study results indicate that SIRT1 might negatively regulate atherosclerotic angiogenesis via mTORC1 and HIF-1α signaling pathway and cointervention of SIRT1 and mTOR may serve as a crucial therapeutic strategy in cardiovascular medicine.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neovascularização Patológica/metabolismo , Transdução de Sinais , Sirtuína 1/biossíntese , Animais , Aterosclerose/patologia , Proliferação de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Neovascularização Patológica/patologia , Coelhos , Proteínas Quinases S6 Ribossômicas 70-kDa/biossíntese , Serina-Treonina Quinases TOR/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA