Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 954: 176295, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299325

RESUMO

Nanomaterials are increasingly recognized for their potential in soil remediation. However, their impact on soil microbial communities in contaminated soil remains poorly understood. In this study, we investigated the dynamic effects of sulfonated graphene (SG) following one-time or repeated applications on heavy metal availability and soil microbial communities in long-term heavy metal-contaminated soil over 180 days. Our findings revealed that one-time SG application at 30 mg kg-1 significantly increased the bioavailable cadmium (Cd) and copper (Cu) contents by approximately 30 %-40 % after 2 and 180 days. Repeated SG applications, however, displayed no significant influence on heavy metal availability. One-time SG application, coupled with the increased available Cd, induced significant enrichment of some specific functional bacterial genera involved in glycan biosynthesis metabolism and biosynthesis of other secondary metabolites, thereby decreasing the available contents of heavy metals after 90 days. However, the shifts in bacterial community structure and function were subsequently partially recovered after 180 days. Conversely, repeated SG treatments led to minimal alterations after 90 days while leading to similar shifts in the bacterial community at 60 mg kg-1 after 180 days. The fungal community structure remained largely unaltered across all SG treatments. Intriguingly, SG treatments substantially stimulated fungal biomass, with the stimulation degree dependent on SG dosage. These results provide valuable insights for developing phytoremediation strategies, suggesting tailored SG applications during specific growth phases to optimize remediation efficiency.

2.
Ecotoxicol Environ Saf ; 283: 116783, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39067076

RESUMO

Residues of herbicides with the extensive applications may impact the soil ecosystem and ultimately threaten agricultural sustainability. However, the effects of long-term herbicide residues on soil multifunctionality and the soil microbial community remain poorly understood. Here, we evaluated relationships between soil multifunctionality and soil microbial communities with residual herbicide concentrations by surveying and analyzing 62 black soil samples collected from an agricultural area in northeastern China. Total residual herbicide concentrations varied from 35 to 568 µg/kg in the soil samples. The response of soil multifunctionality to increasing residual herbicide concentrations exhibited an inverted U-shaped relationship with a peak at approximately 310 µg/kg, with net mineralized organic nitrogen (Nm) and total nitrogen (TN) exhibiting the same trend. Microbial community richness was significantly lower in soil samples with high residual herbicide concentrations (> 310 µg/kg, HG) compared to low residual herbicide concentrations (< 310 µg/kg, LG). In addition, the relative abundances of specific keystone microbial genera differed significantly between LG and HG: norank_f_Acetobacteraceae, norank_f_Caldilineaceae, Candidatus_Alysiosphaera, and Gonytrichum. The relative abundances of these genera were also significantly correlated with soil multifunctionality. Structural equation models (SEMs) further showed that herbicide residues influenced soil multifunctionality by affecting these specific keystone genera. Our study demonstrates that long-term herbicide residues significantly impact the multifunctionality of agricultural black soil, where low concentrations stimulate while high concentrations inhibit, underscoring the need for reasonable application of herbicides to maintain soil ecosystem health.


Assuntos
Herbicidas , Microbiologia do Solo , Poluentes do Solo , Solo , Herbicidas/análise , Herbicidas/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , China , Solo/química , Nitrogênio/análise , Monitoramento Ambiental , Microbiota/efeitos dos fármacos , Agricultura , Bactérias/efeitos dos fármacos , Resíduos de Praguicidas/análise , Ecossistema
3.
J Environ Manage ; 362: 121312, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824888

RESUMO

Ectomycorrhizal (EcM) fungi play an important role in nutrient cycling and community ecological dynamics and are widely acknowledged as important components of forest ecosystems. However, little information is available regarding EcM fungal community structure or the possible relationship between EcM fungi, soil properties, and forestry activities in Pinus massoniana forests. In this study, we evaluated soil properties, extracellular enzyme activities, and fungal diversity and community composition in root and soil samples from pure Pinus massoniana natural forests, pure P. massoniana plantations, and P. massoniana and Liquidambar gracilipes mixed forests. The mixed forest showed the highest EcM fungal diversity in both root and bulk soil samples. Community composition and co-occurrence network structures differed significantly between forest types. Variation in the EcM fungal community was significantly correlated with the activities of ß-glucuronidase and ß-1,4-N-acetylglucosaminidase, whereas non-EcM fungal community characteristics were significantly correlated with ß-1,4-glucosidase and ß-glucuronidase activities. Furthermore, stochastic processes predominantly drove the assembly of both EcM and non-EcM fungal communities, while deterministic processes exerted greater influence on soil fungal communities in mixed forests compared to pure forests. Our findings may inform a deeper understanding of how the assembly processes and environmental roles of subterranean fungal communities differ between mixed and pure plantations and may provide insights for how to promote forest sustainability in subtropical areas.


Assuntos
Florestas , Micorrizas , Pinus , Microbiologia do Solo , Pinus/microbiologia , Solo/química , Biodiversidade , Fungos , Ecossistema
4.
Ying Yong Sheng Tai Xue Bao ; 34(3): 815-824, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087666

RESUMO

Fomesafen, a long residual diphenyl ether herbicide, is widely used for control of annual and perennial broadleaf weeds in peanut and soybean fields. With the development of agricultural production mechanization in China, the application of fomesafen has been rising. Long-term and large-scale application leads to obvious residues in the soil. As a consequence, the resulting ecological and environmental problems need urgent attention from the agricultural and environmental protection departments. We systematically reviewed the research progress about the residual characteristics, ecotoxicological effects and abatement process of fomesafen in farmland soil, and proposed some prospects from the residual formation mechanisms, safe application limit standard, abatement mechanism and technology, aiming to provide some new insights and ideas for solving the problem of residual injury of fomesafen.


Assuntos
Poluentes do Solo , Solo , Solo/química , Fazendas , Poluentes do Solo/análise , Agricultura
5.
Sci Rep ; 9(1): 6131, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992528

RESUMO

Fabrication of inexpensive and flexible electronic and electrochemical sensors is in high demand for a wide range of biochemical and biomedical applications. We explore hand fabrication of CNT modified AgNPs electrodes using wax-on-plastic platforms and their application in electrochemical immunosensing. Wax patterns were printed on polyethylene terephthalate-based substrates to laydown templates for the electrodes. Hand painting was employed to fabricate a silver conductive layer using AgNPs ink applied in the hydrophilic regions of the substrate surrounded by wax. CNT was drop cast on top of the working electrodes to improve their electrochemical signal. The device layers were characterized by scanning electron microscopy. The electrochemical performance of the hand fabricated AgNPs and CNT/AgNPs electrodes was tested using cyclic voltammetry, differential pulse voltammetry, and amperometry. The electrochemical response of CNT/AgNPs electrodes was relatively faster, higher, and more selective than unmodified AgNPs sensing electrodes. Finally, the hand-painted CNT/AgNPs electrodes were applied to detect carcinoembryonic antigen (CEA) by measuring the end-product of immunoassay performed on magnetic particles. The detection limit for CEA was found to be 0.46 ng/mL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA