Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 345: 123556, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38346635

RESUMO

The direct thermal polymerization techniques were applied to prepare the graphene oxide (GO)-graphitic carbon nitride (gCN) hybrid structure. The prepared hybrid heterojunction GO-gCN nanosheets were utilized as a photocatalyst to remove model pollutants methylene blue (MB) dye. The basic physio-chemical properties of GO-gCN layered materials have been analyzed by various characterization techniques. In addition, the proposed materials have a higher photocatalytic ability toward the degradation of aqueous solution of MB dye under visible light irradiation within a short treatment time. This is because it's the synergistic effects of GO-gCN layer-by-layer structures produced by π─π stacking with charge-transfer interactions. The gCN with GO composite can able to enhance the charge transfer and light-harvesting properties. Under the influence of photocatalyst, the surface of Graphene oxide undergoes the separation and combination of carbonyl radicals, hydroxyl radicals, epoxy radicals, and electron-hole pairs. This enhances the absorption of visible light and improves the degradation of MB, when GO is incorporated into gCN. The removal efficiency of MB reached up to 82.311% within the short treatment time.


Assuntos
Grafite , Azul de Metileno , Compostos de Nitrogênio , Elétrons
2.
ACS Appl Mater Interfaces ; 16(3): 3520-3531, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194411

RESUMO

Mg-Sn alloy thin films have garnered significant attention for their outstanding thermoelectric (TE) properties and cost-effective elemental composition, making them potential candidates for wearable energy harvesting devices. While previous studies have explored the properties of these thin films, limited research has been conducted to identify physical factors that can further enhance their performance. In this study, we present a novel approach utilizing a convenient electron beam coevaporation technique to fabricate Mg-Sn alloy thin films. Experimental results revealed that controlling the tin content in the Mg-Sn thin films at 38.9% led to the formation of a mixed-phase structure, comprising Mg2Sn and Mg9Sn5. This dual-phase structure exhibited a notable advantage in enhancing the TE performance. The presence of the Mg9Sn5 phase significantly increased the carrier concentration, while maintaining the original Seebeck coefficient and mobility, thereby improving the conductivity of Mg2Sn. Theoretical calculations indicated that the Mg9Sn5 phase displayed 1D-like characteristics, leading to a highly effective valley degeneracy and consequently a high power factor. Overall, this work introduces a promising approach to fabricate high-performance Mg-Sn alloy thin films through electron beam coevaporation, opening up possibilities for their application in wearable energy harvesting devices.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110948

RESUMO

Solar light is a renewable source of energy that can be used and transformed into electricity using clean energy technology. In this study, we used direct current magnetron sputtering (DCMS) to sputter p-type cuprous oxide (Cu2O) films with different oxygen flow rates (fO2) as hole-transport layers (HTLs) for perovskite solar cells (PSCs). The PSC device with the structure of ITO/Cu2O/perovskite/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)/bathocuproine (BCP)/Ag showed a power conversion efficiency (PCE) of 7.91%. Subsequently, a high-power impulse magnetron sputtering (HiPIMS) Cu2O film was embedded and promoted the device performance to 10.29%. As HiPIMS has a high ionization rate, it can create higher density films with low surface roughness, which passivates surface/interface defects and reduces the leakage current of PSCs. We further applied the superimposed high-power impulse magnetron sputtering (superimposed HiPIMS) derived Cu2O as the HTL, and we observed PCEs of 15.20% under one sun (AM1.5G, 1000 Wm-2) and 25.09% under indoor illumination (TL-84, 1000 lux). In addition, this PSC device outperformed by demonstrating remarkable long-term stability via retaining 97.6% (dark, Ar) of its performance for over 2000 h.

4.
Materials (Basel) ; 16(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36770007

RESUMO

In this research, we studied the functional properties of CuCrO2, which is the most promising p-type transparent conductive oxide (TCO). The thin films were fabricated using a spin coating technique. The diffraction patterns were obtained with the help of X-ray diffractions, and the optical properties of absorption characteristics were studied using UV-visible absorption. The physical properties of film formation and surface morphology were analyzed using FESEM analysis. The aging properties were also analyzed with the help of various precursors with different aging times. The CuCrO2 thin films' functional properties were determined by using chelating agent and precursor solution aging times. The CuCrO2 thin films have better transmittance, resistance, figure of merit (FOM), and electrical conductivity. Moreover, the resistivity values of the CuCrO2 thin films are 7.01, 9.90, 12.54, 4.10, 2.42, and 0.35 Ω cm. The current research article covers the preparation of copper chromium delafossite thin films. These thin films can be suitable for hole transport layers in transparent optoelectronic devices.

5.
Nanomaterials (Basel) ; 12(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014680

RESUMO

High Power Impulse Magnetron Sputtering (HiPIMS) has generated a great deal of interest by offering significant advantages such as high target ionization rate, high plasma density, and the smooth surface of the sputtered films. This study discusses the deposition of copper nitride thin films via HiPIMS at different deposition pressures and then examines the impact of the deposition pressure on the structural and electrical properties of Cu3N films. At low deposition pressure, Cu-rich Cu3N films were obtained, which results in the n-type semiconductor behavior of the films. When the deposition pressure is increased to above 15 mtorr, Cu3N phase forms, leading to a change in the conductivity type of the film from n-type to p-type. According to our analysis, the Cu3N film deposited at 15 mtorr shows p-type conduction with the lowest resistivity of 0.024 Ω·cm and the highest carrier concentration of 1.43 × 1020 cm-3. Furthermore, compared to the properties of Cu3N films deposited via conventional direct current magnetron sputtering (DCMS), the films deposited via HiPIMS show better conductivity due to the higher ionization rate of HiPIMS. These results enhance the potential of Cu3N films' use in smart futuristic devices such as photodetection, photovoltaic absorbers, lithium-ion batteries, etc.

6.
Nanomaterials (Basel) ; 11(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443847

RESUMO

In-Sn-Zn oxide (ITZO) nanocomposite films have been investigated extensively as a potential material in thin-film transistors due to their good electrical properties. In this work, ITZO thin films were deposited on glass substrates by high-power impulse magnetron sputtering (HiPIMS) at room temperature. The influence of the duty cycle (pulse off-time) on the microstructures and electrical performance of the films was investigated. The results showed that ITZO thin films prepared by HiPIMS were dense and smooth compared to thin films prepared by direct-current magnetron sputtering (DCMS). With the pulse off-time increasing from 0 µs (DCMS) to 2000 µs, the films' crystallinity enhanced. When the pulse off-time was longer than 1000 µs, In2O3 structure could be detected in the films. The films' electrical resistivity reduced as the pulse off-time extended. Most notably, the optimal resistivity of as low as 4.07 × 10-3 Ω·cm could be achieved when the pulse off-time was 2000 µs. Its corresponding carrier mobility and carrier concentration were 12.88 cm2V-1s-1 and 1.25 × 1020 cm-3, respectively.

7.
BMC Musculoskelet Disord ; 22(1): 58, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422040

RESUMO

BACKGROUND: Full-endoscopic lumbar discectomy (FELD) is an alternative to posterior open surgery to treat a high-grade migrated herniated disc. However, because of the complexity of the surgery, success is dependent on the surgeon's skill. Therefore, patients are frequently treated using open discectomy. Anatomical constraints and technical difficulties can lead to the incomplete removal of high-grade migrated discs. METHODS: We retrospectively reviewed patients who had undergone FELD performed by a single surgeon between January 2010 and January 2014 from a prospective spine registry in an institute. Perioperative records and data of the Oswestry Disability Index, visual analog scale scores (preoperatively and 2 weeks, 6 weeks, 3 months, 6 months, 1 year, 2 years, and 5 years after the operation), and MacNab criteria were collected. RESULTS: Of 58 patients with a follow-up duration of > 5 years, (41 and 17 patients had undergone transforaminal endoscopic lumbar discectomy [TELD] and interlaminar endoscopic lumbar discectomy [IELD], respectively), the satisfaction rate was 87.8% (five unsatisfactory cases) for TELD and 100% for IELD. The overall percentage of patients with good to excellent results according to modified MacNab criteria was 91.3% (53/58 patients). Two patients had residual discs. Two patients needed an open discectomy due to recurrent disc herniation. One IELD patient received spinal fusion surgery due to segmental instability after 5 years. CONCLUSION: FELD has a high success rate for the management of high-grade migrated herniated discs. In patients with high-grade disc migration from L1 to L5, TELD is effective and safe. However, for L4-L5 and L5-S1 high-grade upward and downward disc migration, IELD is the favorable option and provides high patient satisfaction.


Assuntos
Discotomia Percutânea , Deslocamento do Disco Intervertebral , Estudos de Coortes , Endoscopia , Seguimentos , Humanos , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/cirurgia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Sistema de Registros , Estudos Retrospectivos , Resultado do Tratamento
8.
Materials (Basel) ; 13(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455656

RESUMO

CuCrO2 is one of the most promising p-type transparent conductive oxide (TCO) materials. Its electrical properties can be considerably improved by Mg doping. In this work, Cr-deficient CuCrO2 thin films were deposited by reactive magnetron sputtering based on 5 at.% Mg doping. The influence of Cr deficiency on the film's optoelectronic properties was investigated. As the film's composition varied, CuO impurity phases appeared in the film. The mixed valency of Cu+/Cu2+ led to an enhancement of the hybridization between the Cu3d and O2p orbitals, which further reduced the localization of the holes by oxygen. As a result, the carrier concentration significantly improved. However, since the impurity phase of CuO introduced more grain boundaries in Cu[Cr0.95-xMg0.05]O2, impeding the transport of the carrier and incident light in the film, the carrier mobility and the film's transmittance reduced accordingly. In this work, the optimal optoelectronic performance is realized where the film's composition is Cu[Cr0.78Mg0.05]O2. Its Haacke's figure of merit is about 1.23 × 10-7 Ω-1.

9.
Nanoscale Res Lett ; 12(1): 224, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28351127

RESUMO

Amorphous Si (a-Si) films with metal silicide are expected to enhance the absorption ability of pure a-Si films. In this present study, NiSi (20 nm)/Si (40 nm) and AlSi (20 nm)/Si (40 nm) bilayer thin films are deposited through radio frequency (RF) sputtering at room temperature. The influence of the film's composition and the annealing temperature on the film's optical absorption is investigated. The results show that all the NiSi/Si films and AlSi/Si films possess higher absorption ability compared to a pure a-Si film (60 nm). After annealing from 400 to 600 °C under vacuum for 1 h, the Si layer remains amorphous in both NiSi/Si films and AlSi/Si films, while the NiSi layer crystallizes into NiSi2 phase, whereas Al atoms diffuse through the whole film during the annealing process. Consequently, with increasing the annealing temperature, the optical absorption of NiSi/Si films increases, while that of AlSi/Si films obviously degrades.

10.
Materials (Basel) ; 9(12)2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28774108

RESUMO

In this work, Ga-doped ZnO (GZO) thin films were deposited via radio frequency sputtering at room temperature. The influence of the Ga content on the film's optoelectronic properties as well as the film's electrical stability were investigated. The results showed that the film's crystallinity degraded with increasing Ga content. The film's conductivity was first enhanced due to the replacement of Zn2+ by Ga3+ before decreasing due to the separation of neutralized gallium atoms from the ZnO lattice. When the Ga content increased to 15.52 at %, the film's conductivity improved again. Furthermore, all films presented an average transmittance exceeding 80% in the visible region. Regarding the film's electrical stability, GZO thermally treated below 200 °C exhibited no significant deterioration in electrical properties, but such treatment over 200 °C greatly reduced the film's conductivity. In normal atmospheric conditions, the conductivity of GZO films remained very stable at ambient temperature for more than 240 days.

11.
J Nanosci Nanotechnol ; 12(2): 1440-3, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629974

RESUMO

The single-layered Fe-Pt films with thickness of 30 nm are in-situ deposited directly on Si substrate at various substrate temperatures (Ts) of 350 to 590 degrees C. As the Fe-Pt film is sputtered at substrate temperature is 350 degrees C, it shows (111) preferred orientation and tends to in-plane magnetic anisotropy. The L1(0) Fe-Pt film with (001) texture is obtained and exhibited perpendicular magnetic anisotropy as the substrate temperature is increased to 470 degrees C. The perpendicular coercivity (Hc perpendicular), saturation magnetization (Ms) and perpendicular squareness (S perpendicular) of this film are 6.9 kOe, 674 emu/cm3 and 0.89, respectively, which reveal its significant potential as perpendicular magnetic recording media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA