Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Antiviral Res ; 222: 105797, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38185222

RESUMO

RNA viral infections seriously endanger human health. Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) suppresses innate immunity against influenza A virus, and pharmacological inhibition of SHP2 provokes hepatic innate immunity. SHP2 binds and catalyzes tyrosyl dephosphorylation of protein zero-related (PZR), but the regulatory effect of PZR on innate immune response to viral infection is unclear. In this study, the transcription and protein level of PZR in host cells were found to be decreased with RNA viral infection, and high level of PZR was uncovered to inhibit interferon (IFN) signaling mediated by RIG-I and MDA5. Through localizing in mitochondria, PZR targeted and interacted with MAVS (also known as IPS-1/VISA/Cardif), suppressing the aggregation and activation of MAVS. Specifically, Y263 residue in ITIM is critical for PZR to exert immunosuppression under RNA viral infection. Moreover, the recruited SHP2 by PZR that modified with tyrosine phosphorylation under RNA viral infection might inhibit phosphorylation activation of MAVS. In conclusion, PZR and SHP2 suppress innate immune response to RNA viral infection through inhibiting MAVS activation. This study reveals the regulatory mechanism of PZR-SHP2-MAVS signal axis on IFN signaling mediated by RIG-I and MDA5, which may provide new sight for developing antiviral drugs.


Assuntos
Infecções por Vírus de RNA , Vírus de RNA , Viroses , Humanos , Transdução de Sinais , Proteína DEAD-box 58 , Imunidade Inata , Interferons , RNA
2.
J Virol ; 97(12): e0151323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032198

RESUMO

IMPORTANCE: The precise regulation of the innate immune response is essential for the maintenance of homeostasis. MAVS and STING play key roles in immune signaling pathways activated by RNA and DNA viruses, respectively. Here, we showed that DHCR24 impaired the antiviral response by targeting MAVS and STING. Notably, DHCR24 interacts with MAVS and STING and inhibits TRIM21-triggered K27-linked ubiquitination of MAVS and AMFR-triggered K27-linked ubiquitination of STING, restraining the activation of MAVS and STING, respectively. Together, this study elucidates how one cholesterol key enzyme orchestrates two antiviral signal transduction pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Imunidade Inata , Proteínas de Membrana , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hidroxiesteroides , Proteínas de Membrana/metabolismo , Oxirredutases , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Ubiquitinação , Linhagem Celular
4.
PLoS Pathog ; 19(6): e1011443, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327222

RESUMO

The host always employs various ways to defend against viral infection and spread. However, viruses have evolved their own effective strategies, such as inhibition of RNA translation of the antiviral effectors, to destroy the host's defense barriers. Protein synthesis, commonly controlled by the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), is a basic cellular biological process among all species. In response to viral infection, in addition to inducing the transcription of antiviral cytokines by innate immunity, infected cells also inhibit the RNA translation of antiviral factors by activating the protein kinase R (PKR)-eIF2α signaling pathway. Regulation of innate immunity has been well studied; however, regulation of the PKR-eIF2α signaling pathway remains unclear. In this study, we found that the E3 ligase TRIM21 negatively regulates the PKR-eIF2α signaling pathway. Mechanistically, TRIM21 interacts with the PKR phosphatase PP1α and promotes K6-linked polyubiquitination of PP1α. Ubiquitinated PP1α augments its interaction with PKR, causing PKR dephosphorylation and subsequent translational inhibition release. Furthermore, TRIM21 can constitutively restrict viral infection by reversing PKR-dependent translational inhibition of various previously known and unknown antiviral factors. Our study highlights a previously undiscovered role of TRIM21 in regulating translation, which will provide new insights into the host antiviral response and novel targets for the treatment of translation-associated diseases in the clinic.


Assuntos
RNA , Viroses , Humanos , RNA/metabolismo , eIF-2 Quinase/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação , Antivirais , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Replicação Viral
5.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768623

RESUMO

The detection of circulating tumor cells (CTCs) is an emerging strategy for the early detection, prognostication, and identification of recurrent cancer. The clinical utility of CTC detection has been established, but few studies have employed this strategy for the detection of gynecologic cancers. Here, we present a novel, biochip-based microfluidic device for the detection of CTCs in gynecologic cancers. The study cohort included three patients with cervical cancer, eight with endometrial cancer, two with ovarian cancer, two with breast cancer, and one with vaginal small cell carcinoma. Four cancer type-specific molecular markers (PanCK, GATA3, HER2, and HE4), as well as CD13, were used for prognostication and recurrence detection, along with downstream genomic analysis. GATA3 and HER2 were markedly expressed in the patients with cervical cancer, and this expression was strongly correlated with the early detection of recurrent disease. All four molecular markers were expressed preoperatively in the patients with endometrial cancer, and the re-expression of different markers was observed at follow-up before recurrence was confirmed. CD13 was identified as an alternative prognostic marker for both cervical and endometrial cancer. Our pilot study indicated that the novel CTC detection system can be used for prognostication and early detection of disease recurrence, which needed further investigation.


Assuntos
Neoplasias da Mama , Neoplasias do Endométrio , Neoplasias dos Genitais Femininos , Células Neoplásicas Circulantes , Neoplasias do Colo do Útero , Humanos , Feminino , Células Neoplásicas Circulantes/patologia , Microfluídica , Projetos Piloto , Recidiva Local de Neoplasia/diagnóstico , Neoplasias dos Genitais Femininos/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/patologia , Biomarcadores Tumorais
6.
Environ Sci Pollut Res Int ; 30(6): 14240-14252, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36149563

RESUMO

Sulfidated nanoscale zerovalent iron (S-nZVI) supported on a flower spherical Mg(OH)2 with different Mg/Fe ration were successfully synthesized. The synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The results showed that S-nZVI particles were well dispersed on the petals of the flower spherical Mg(OH)2. The influence of factors, including the initial solution pH, Mg/Fe, S/Fe were studied. The trichloroethylene (TCE) adsorption data on Mg(OH)2 and S-nZVI @Mg(OH)2 fit well to a Langmuir isotherm model, and the maximum adsorption of S-nZVI @Mg(OH)2 was 253.55 mg/g, which was 2.6-fold of S-nZVI. Meanwhile, the S-nZVI @Mg(OH)2 composite expanded the pH selection range of S-nZVI from 2 to 11. Cycling experiments showed that removal rate was 58.3% for the 5th cycle. TCE removal was due to synergistic action of reduction coupled with adsorption. During this process, 65.43% of total remove TCE from ion chromatography data was reduced and 34.57% of total remove TCE was adsorbed finally. At the same time, adsorption favors reduction. These observations indicated that the S-nZVI @Mg(OH)2 can be considered as potential adsorbents to remove TCE for environment remediation.


Assuntos
Recuperação e Remediação Ambiental , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/química , Ferro/química , Adsorção , Difração de Raios X , Poluentes Químicos da Água/química
8.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499466

RESUMO

Single-cell sequencing provides promising information in tumor evolution and heterogeneity. Even with the recent advances in circulating tumor cell (CTC) technologies, it remains a big challenge to precisely and effectively isolate CTCs for downstream analysis. The Cell RevealTM system integrates an automatic CTC enrichment and staining machine, an AI-assisted automatic CTC scanning and identification system, and an automatic cell picking machine for CTC isolation. H1975 cell line was used for the spiking test. The identification of CTCs and the isolation of target CTCs for genetic sequencing were performed from the peripheral blood of three cancer patients, including two with lung cancer and one with both lung cancer and thyroid cancer. The spiking test revealed a mean recovery rate of 81.81% even with extremely low spiking cell counts with a linear relationship between the spiked cell counts and the recovered cell counts (Y = 0.7241 × X + 19.76, R2 = 0.9984). The three cancer patients had significantly higher TTF-1+ CTCs than healthy volunteers. All target CTCs were successfully isolated by the Cell Picker machine for a subsequent genetic analysis. Six tumor-associated mutations in four genes were detected. The present study reveals the Cell RevealTM platform can precisely identify and isolate target CTCs and then successfully perform single-cell sequencing by using commercially available genetic devices.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Separação Celular , Linhagem Celular Tumoral , Dispositivos Lab-On-A-Chip , Neoplasias Pulmonares/genética
9.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500559

RESUMO

A series of binary composites Bi4O5Br2/BiPO4 (PBX) was fabricated through a simple mechanical ball milling protocol. Relevant microstructural, morphological, and optical properties were thoroughly analyzed via various techniques. The integration of both components was confirmed to produce heterojunction domains at the phase boundaries. Upon exposure to visible light irradiation, the as-achieved PBX series possessed the reinforced photocatalytic NOx removal efficiencies and the weakened generation of toxic intermediate NO2 in comparison to both bare components, chiefly attributed to the efficient transport and separation of carriers and boosted production of superoxide radicals (·O2-) through the combination of a wide-bandgap ornament BiPO4 as an electron acceptor. In particular, the composite PB5 with the optimal phase composition exhibited the highest NOx removal of 40% with the lowest NO2 formation of 40 ppb among all tested candidates. According to the band structures' estimation and reactive species' detection, a reasonable mechanism was ultimately proposed to describe the migration of charge carriers and the enhancement of photocatalytic performance.


Assuntos
Luz , Oxidantes , Superóxidos
10.
Materials (Basel) ; 15(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36556814

RESUMO

ZnO nanowires and nanowalls can be fabricated on the glass substrate with a ZnO seed film and low-cost aluminum (Al) foil by the aqueous solution method (ASM), respectively. The different concentrations of ZnO precursors can use to control the densities of ZnO nanowalls. In addition, FESEM, FETEM, EDS, XRD, XPS, and CL were used to evaluate the characteristics of ZnO nanowalls. The ZnO nanowalls exhibited higher photocatalytic efficiency (99.4%) than that of ZnO nanowires (53.3%) for methylene blue (MB) degradation under UVC light irradiation at the ZnO precursors of 50 mM. This result is attributed to ZnO nanowalls with Al-doped, which can improve the separation of photogenerated electron-hole pairs for enhanced photocatalytic activity. In addition, ZnO nanowalls can also reveal higher photocatalytic activity for the degradation of tetracycline capsules (TC) rather than commercial ZnO nanopowder under UVC light irradiation. The superoxide and hydroxyl radicals play essential roles in the degradation of MB and TC solutions by the radical-trapping experiment. Furthermore, the ZnO nanowalls exhibit excellent recycling and reuse capacity for up to four cycles for the degradation of MB and TC. This study highlights the potential use of ZnO nanowalls directly grown on commercial and low-cost Al foil as noble metal-free photocatalysis.

11.
J Immunol ; 209(10): 1987-1998, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36426955

RESUMO

Pyroptosis is a form of regulated cell death mediated by the gasdermin protein family. During virus infection, cell pyroptosis restricts viral replication. The mechanisms of the tripartite motif (TRIM) protein family and IFN-stimulated genes (ISGs) against viruses have been studied. The role of TRIMs and ISGs in pyroptosis remains unclear. In this study, we show that TRIM21 interacts with ISG12a in viral infection and facilitates its translocation into the mitochondria by promoting its ubiquitination, thereby causing caspase 3 activation. Gasdermin E (GSDME) is specifically cleaved by caspase 3 upon viral infection, releasing the GSDME N-terminal domain, perforating the cell membrane, and causing cell pyroptosis. Our study uncovers a new mechanism of TRIM21 and ISG12a in regulating virus-induced cell pyroptosis.


Assuntos
Piroptose , Vírus , Piroptose/fisiologia , Caspase 3/metabolismo , Ubiquitinação , Morte Celular , Proteínas com Motivo Tripartido/metabolismo
12.
Cell Rep ; 40(7): 111188, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977504

RESUMO

Soft tissue environments govern neuronal morphogenesis. However, the precise molecular mechanisms underlying chemotropism-directed axonal growth cone movement in extremely soft environments remain unclear. Here, we show that drebrin, a growth cone T-zone protein, modulates growth cone turning in response to brain-derived neurotrophic factor (BDNF) coated on a soft substrate. Structurally, axonal growth cones of rodent hippocampal neurons grown on 0.1 kPa hydrogels possess an expanded T zone in which drebrin is highly integrated with both F-actin and microtubules. Biochemically, we identify paxillin as interacting with drebrin in cells grown on 0.1 kPa hydrogels but not on glass coverslips. When grown on 0.1 kPa substrates, growth cones asymmetrically exposed to BDNF-bound stripes exhibit enhanced paxillin-drebrin interaction on the side facing the stripes, an activity that is PKA and AAK1 dependent but independent of Src kinase. Functionally, we show that BDNF-induced growth cone turning and force generation on soft substrates require drebrin phosphorylation and paxillin-drebrin association.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cones de Crescimento , Actinas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cones de Crescimento/metabolismo , Hidrogéis , Neurônios/metabolismo , Neuropeptídeos , Paxilina/metabolismo
13.
Cell Rep ; 40(7): 111215, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977519

RESUMO

Interferons (IFNs) are essential in antiviral defense, antitumor effects, and immunoregulatory activities. Although methionine oxidation is associated with various physiological and pathophysiological processes in plants, animals, and humans, its role in immunity remains unclear. We find that the redox cycling of signal transducer and activator of transcription 2 (STAT2) is an intrinsic cellular biological process, and that impairment of the redox status contributes to STAT2 methionine oxidation, inhibiting its activation. IFN protects STAT2 from methionine oxidation through the recruitment of methionine sulfoxide reductase MSRB2, whose enzymatic activity is enhanced by N-acetyltransferase 9 (NAT9), a chaperone of STAT2 defined in this study, upon IFN treatment. Consequently, loss of Nat9 renders mice more susceptible to viral infection. Our study highlights the key function of methionine oxidation in immunity, which provides evidence for the decline of immune function by aging and may provide insights into the clinical applications of IFN in immune-related diseases.


Assuntos
Imunidade Inata , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Animais , Homeostase , Humanos , Metionina , Camundongos , Oxirredução , Fator de Transcrição STAT1/metabolismo
14.
Front Bioeng Biotechnol ; 10: 791433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669059

RESUMO

Fluorosis is still endemic in at least 25 countries around the world. In this study, we investigated the effect of high fluoride intake on fracture healing. Our in vitro experiments found that fluoride inhibited the osteogenic and angiogenic differentiation of MSCs in a dose-dependent manner. By constructing a bone fracture model, we found that high fluoride intake influences bone fracture by attenuating endochondral ossification and angiogenesis. In the mechanism, we clarified that high fluoride inhibits M2 differentiation rather than M1 differentiation in the fracture area, which may contribute to the delayed healing of the fracture. These findings provide an essential reference for the clinical treatment of bone fracture patients with a history of high fluoride intake or skeletal fluorosis patients.

15.
Cell Oncol (Dordr) ; 45(4): 557-572, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716258

RESUMO

PURPOSE: Anti-angiogenesis drug therapy is ineffective in treating uveal melanoma since it only targets angiogenesis leaving vasculogenic mimicry aside. There is no effective clinical strategy targeting vasculogenic mimicry, yet. We show here that CD146 is a novel target to inhibit uveal melanoma progression since it regulates both uveal melanoma angiogenesis and vasculogenic mimicry activity. METHODS: CD146 inhibition was achieved with its specific siRNAs or antibody AA98. Tube formation and migration of primary human retinal microvascular endothelial cells and tube-like structure formation, migration, invasion of uveal melanoma cells were evaluated after CD146 inhibition. The underlying mechanisms were investigated by Western blot and immunofluorescence. Finally, uveal melanoma cells were injected subretinally into the eyes of nude mice and AA98 was administrated. Tumor size was revealed by H&E staining, and angiogenesis and vasculogenic mimicry were evaluated with CD31-PAS staining. RESULTS: CD146 inhibition induced declines in tube formation and migration of primary human retinal microvascular endothelial cells and tube-like structure formation of uveal melanoma cells. CD146 mediated VEGFR/AKT/p38/NF-κB and FAK/VE-cadherin signal cascades were partially responsible for these biological effects. CD146 blockade by siRNA or AA98 also resulted in inhibition of migration and invasion as well as EMT process of uveal melanoma cells. The physiological relevance of such declines was confirmed by showing that AA98 treatment markedly suppressed the tumor growth, angiogenesis and vasculogenic mimicry induced by implantation of uveal melanoma cells into the eyes of nude mice. CONCLUSIONS: CD146 is a novel mediator of both angiogenesis and vasculogenic mimicry in uveal melanoma. Its antibody AA98 has the potency to be developed as a new antibody drug for treating uveal melanoma. Our results warrant further assessment of CD146 as a potential target to improve therapeutic management of uveal melanoma in a clinical setting.


Assuntos
Células Endoteliais , Neoplasias Uveais , Animais , Antígeno CD146 , Células Endoteliais/patologia , Humanos , Melanoma , Camundongos , Camundongos Nus , Neovascularização Patológica/patologia , RNA Interferente Pequeno , Neoplasias Uveais/irrigação sanguínea , Neoplasias Uveais/genética , Neoplasias Uveais/patologia
16.
J Virol ; 96(7): e0000122, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35254105

RESUMO

The induction of interferons (IFNs) plays an important role in the elimination of invading pathogens. Heat shock binding protein 21 (HBP21), first known as a molecular chaperone of HSP70, is involved in tumor development. Heat shock binding proteins have been shown to regulate diverse biological processes, such as cell cycle, kinetochore localization, transcription, and cilium formation. Their role in antimicrobial immunity remains unknown. Here, we found that HBP21 drives a positive feedback loop to promote IRF3-mediated IFN production triggered by viral infection. HBP21 deficiency significantly impaired the virus-induced production of IFN and resulted in greater susceptibility to viral infection both in vitro and in vivo. Mechanistically, HBP21 interacted with IRF3 and promoted the formation of a TBK1-IRF3 complex. Moreover, HBP21 abolished the interaction between PP2A and IRF3 to repress the dephosphorylation of IRF3. Analysis of HBP21 protein structure further confirmed that HBP21 promotes the activation of IRF3 by depressing the dephosphorylation of IRF3 by PP2A. Further study demonstrated that virus-induced phosphorylation of Ser85 and Ser153 of HBP21 itself is important for the phosphorylation and dimerization of IRF3. Our study identifies HBP21 as a new positive regulator of innate antiviral response, which adds novel insight into activation of IRF3 controlled by multiple networks that specify behavior of tumors and immunity. IMPORTANCE The innate immune system is the first-line host defense against microbial pathogen invasion. The physiological functions of molecular chaperones, involving cell differentiation, migration, proliferation and inflammation, have been intensively studied. HBP21 as a molecular chaperone is critical for tumor development. Tumor is related to immunity. Whether HBP21 regulates immunity remains unknown. Here, we found that HBP21 promotes innate immunity response by dual regulation of IRF3. HBP21 interacts with IRF3 and promotes the formation of a TBK1-IRF3 complex. Moreover, HBP21 disturbs the interaction between PP2A and IRF3 to depress the dephosphorylation of IRF3. Analysis of HBP21 protein structure confirms that HBP21 promotes the activation of IRF3 by blocking the dephosphorylation of IRF3 by PP2A. Interestingly, virus-induced Ser85 and Ser153 phosphorylation of HBP21 is important for IRF3 activation. Our findings add to the known novel immunological functions of molecular chaperones and provide new insights into the regulation of innate immunity.


Assuntos
Imunidade Inata , Chaperonas Moleculares , Viroses , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/metabolismo , Chaperonas Moleculares/metabolismo , Fosforilação , Viroses/imunologia
17.
J Virol ; 96(7): e0020722, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35297670

RESUMO

Long noncoding RNAs (lncRNAs) widely exist in the cells and play important roles in various biological processes. The role of lncRNAs in immunity remains largely unknown. lncRNA BST2-2 (lncBST2-2) was upregulated upon viral infection and dependent on the interferon (IFN)/JAK/STAT signaling pathway. There was no coding potential found in the lncBST2-2 transcript. Overexpression of lncBST2-2 inhibited the replication of hepatitis C virus (HCV), Newcastle disease virus (NDV), vesicular stomatitis virus (VSV), and herpes simplex virus (HSV), while knockdown of lncBST2-2 facilitated viral replication. Further studies showed that lncBST2-2 promoted the phosphorylation, dimerization, and nuclear transport of IRF3, promoting the production of IFNs. Importantly, lncBST2-2 interacted with the DNA-binding domain of IRF3, which augmented TBK1 and IRF3 interaction, thereby inducing robust production of IFNs. Moreover, lncBST2-2 impaired the interaction between IRF3 and PP2A-RACK1 complex, an essential step for the dephosphorylation of IRF3. These data shown that lncBST2-2 promotes the innate immune response to viral infection through targeting IRF3. Our study reveals the lncRNA involved in the activation of IRF3 and provides a new insight into the role of lncRNA in antiviral innate immunity. IMPORTANCE Innate immunity is an important part of the human immune system to resist the invasion of foreign pathogens. IRF3 plays a critical role in the innate immune response to viral infection. In this study, we demonstrated that lncBST2-2 plays an important role in innate immunity. Virus-induced lncBST2-2 positively regulates innate immunity by interacting with IRF3 and blocking the dephosphorylation effect of RACK1-PP2A complex on IRF3, thus inhibiting viral infection. Our study provides a new insight into the role of lncBST2-2 in the regulation of IRF3 signaling activation.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , RNA Longo não Codificante , Viroses , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon/metabolismo , Interferons/metabolismo , RNA Longo não Codificante/genética , Viroses/genética , Viroses/imunologia , Replicação Viral , Vírus/imunologia
18.
J Virol ; 96(6): e0217521, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107381

RESUMO

REC8 meiotic recombination protein (REC8) is a member of structural maintenance of chromosome (SMC) protein partners, which play an important role in meiosis, antitumor activity, and sperm formation. As the adaptor proteins of RIG-I-like receptor (RLR) signaling and cyclic GMP-AMP synthase (cGAS)-DNA signaling, the activity and stability of MAVS (mitochondrial antiviral signaling protein; also known as VISA, Cardif, and IPS-1) and STING (stimulator of interferon genes; also known as MITA) are critical for innate immunity. Here, we report that REC8 interacts with MAVS and STING and inhibits their ubiquitination and subsequent degradation, thereby promoting innate antiviral signaling. REC8 is upregulated through the JAK-STAT signaling pathway during viral infection. Knockdown of REC8 impairs the innate immune responses against vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and herpes simplex virus (HSV). Mechanistically, during infection with viruses, the SUMOylated REC8 is transferred from the nucleus to the cytoplasm and then interacts with MAVS and STING to inhibit their K48-linked ubiquitination triggered by RNF5. Moreover, REC8 promotes the recruitment of TBK1 to MAVS and STING. Thus, REC8 functions as a positive modulator of innate immunity. Our work highlights a previously undocumented role of meiosis-associated protein REC8 in regulating innate immunity. IMPORTANCE The innate immune response is crucial for the host to resist the invasion of viruses and other pathogens. STING and MAVS play a critical role in the innate immune response to DNA and RNA viral infection, respectively. In this study, REC8 promoted the innate immune response by targeting STING and MAVS. Notably, REC8 interacts with MAVS and STING in the cytoplasm and inhibits K48-linked ubiquitination of MAVS and STING triggered by RNF5, stabilizing MAVS and STING protein to promote innate immunity and gradually inhibiting viral infection. Our study provides a new insight for the study of antiviral innate immunity.


Assuntos
Proteínas de Ciclo Celular , Imunidade Inata , Viroses , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antivirais , Proteínas de Ciclo Celular/imunologia , Proteínas de Membrana/metabolismo , Vírus da Doença de Newcastle , Simplexvirus , Ubiquitinação , Vírus da Estomatite Vesicular Indiana , Viroses/imunologia
19.
Sci Rep ; 11(1): 23744, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887512

RESUMO

Surgery is traditionally a male-dominated field, and gender differences exist despite the growing numbers of female surgeons. A handful of studies have evaluated the condition in Asian societies. We aimed to examine the difference between female and male surgeons in urology, general surgery, and gynecology by analyzing a nationwide, population-based database. We identified surgeons with a clinical experience of six to thirteen years between 1995 to 2013 from the National Health Insurance Research Database. We collected patient numbers and revenue per month in outpatient and inpatient care, as well as monthly numbers of surgeries conducted by female and male surgeons in urology, general surgery, and gynecology, for analysis. Original student's t-test and wilcoxon rank sum test was used to compare the differences between female and male surgeons, and p values less than 0.05 were considered statistically significant. Female urologists and general surgeons had a significantly higher ratio of female patients in Taiwan. Female urologists had patient numbers, revenues, and numbers of surgeries comparable to male urologists. In contrast, female general surgeons had significantly less involvement in outpatient and inpatient care and had low monthly revenues. Female general surgeons contradictorily performed more oncological surgeries per month than males. However, the difference in numbers of oncological surgeries was not significant after excluding breast cancer surgeries. Female gynecologists had a similar amount of outpatients and outpatient revenue but significantly less inpatient care and numbers of surgeries per month. A gender-based gap exists among surgeons in Taiwan. The gap between females and males appeared narrower in urology than in general surgery and gynecology. Management of diseases related to female sex organs, including breast, were more common among female surgeons. Efforts should be made to decrease gender stereotypes, to ensure that patients receive the best care regardless of the sex of the surgeons.


Assuntos
Tomada de Decisão Clínica , Assistência ao Paciente , Padrões de Prática Médica , Cirurgiões , Feminino , Humanos , Pacientes Internados , Masculino , Pacientes Ambulatoriais , Assistência ao Paciente/métodos , Assistência ao Paciente/estatística & dados numéricos , Fatores Sexuais , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA