Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Plant Sci ; 335: 111826, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574138

RESUMO

CONSTANS (CO) is the key gene in the photoperiodic pathway that regulates flowering in plants. In this paper, a CONSTANS-like 14A (COL14A) gene was obtained from mango, and its expression patterns and functions were characterized. Sequence analysis shows that MiCOL14A-JH has an additional A base, which leads to code shifting in subsequent coding boxes and loss of the CCT domain. The MiCOL14A-JH and MiCOL14A-GQ genes both belonged to group Ⅲ of the CO/COL gene family. Analysis of tissue expression patterns showed that MiCOL14A was expressed in all tissues, with the highest expression in the leaves of seedling, followed by lower expression levels in the flowers and stems of adult leaves. However, there was no significant difference between different mango varieties. At different development stages of flowering, the expression level of MiCOL14A-GQ was the highest in the leaves before floral induction period, and the lowest at flowering stage, while the highest expression level of MiCOL14A-JH appeared in the leaves at flowering stage. The transgenic functional analysis showed that both MiCOL14A-GQ and MiCOL14A-JH induced delayed flowering of transgenic Arabidopsis. In addition, MiCOL14A-JH enhanced the resistance of transgenic Arabidopsis to drought stress, while MiCOL14A-GQ increased the sensitivity of transgenic Arabidopsis to salt stress. Further proteinprotein interaction analysis showed that MiCOL14A-JH directly interacted with MYB30-INTERACTING E3 LIGASE 1 (MiMIEL1), CBL-interacting protein kinase 9 (MiCIPK9) and zinc-finger protein 4 (MiZFP4), but MiCOL14A-GQ could not interact with these three stress-related proteins. Together, our results demonstrated that MiCOL14A-JH and MiCOL14A-GQ not only regulate flowering but also play a role in the abiotic stress response in mango, and the lack of the CCT domain affects the proteinprotein interaction, thus affecting the gene response to stress. The insertion of an A base can provide a possible detection site for mango resistance breeding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mangifera , Arabidopsis/metabolismo , Mangifera/genética , Mangifera/metabolismo , Secas , Melhoramento Vegetal , Proteínas de Arabidopsis/metabolismo , Fotoperíodo , Flores , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant Sci ; 327: 111541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417961

RESUMO

The CO/COL gene family plays an important role in regulating photoperiod-dependent flowering time in plants. In this study, two COL2 gene homologs, MiCOL2A and MiCOL2B, were isolated from 'SiJiMi' mango, and their expression patterns and functions were characterized. The MiCOL2A and MiCOL2B genes both belonged to the group Ⅰ of CO/COL gene family. MiCOL2A and MiCOL2B exhibited distinct circadian rhythms and were highly expressed in leaves during the flowering induction period. Subcellular localization analysis revealed that MiCOL2A and MiCOL2B are localized in the nucleus. The overexpression of MiCOL2A and MiCOL2B significantly delayed flowering time in Arabidopsis under both long-day (LD) and short-day (SD) conditions. The MiCOL2A and MiCOL2B overexpression Arabidopsis plants exhibited more tolerance to slat and drought stress after abiotic stress treatments, with greater ROS scavenging capacity and protective enzyme activity, less cell damage and death and higher expression of stress response genes than wild type plants. Bimolecular fluorescence complementation (BiFC) analysis showed that MiCOL2A and MiCOL2B interacted with several stress-related proteins, including zinc finger protein 4 (MiZFP4), MYB30-INTERACTING E3 LIGASE 1 (MiMIEL1) and RING zinc finger protein 34 (MiRZFP34). The results indicate that MiCOL2A and MiCOL2B are not only involved in flowering time but also play a positive role in abiotic stress responses in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Mangifera , Plantas Geneticamente Modificadas , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Flores/genética , Flores/crescimento & desenvolvimento , Mangifera/genética , Fotoperíodo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Physiol Biochem ; 172: 125-135, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065373

RESUMO

The CONSTANS-LIKE1 (COL1) gene plays an important role in the regulation of photoperiodic flowering in plants. In this study, two COL1 homolog genes, MiCOL1A and MiCOL1B, were isolated from mango (Mangifera indica L.). The open reading frames of MiCOL1A and MiCOL1B are 852 and 822 bp in length and encode 284 and 274 amino acids, respectively. The MiCOL1A and MiCOL1B proteins contain only one CCT domain and belong to the CO/COL group IV protein family. MiCOL1A and MiCOL1B were expressed both in vegetative and reproductive organs but with expression level differences. MiCOL1A was highly expressed in juvenile and adult leaves, but MiCOL1B was highly expressed in flowers. Seasonal expression analysis showed that MiCOL1A and MiCOL1B have similar expression patterns and higher expression levels during flower induction and flower organ differentiation periods. However, MiCOL1A and MiCOL1B exhibited unstable patterns in circadian expression analysis. MiCOL1A and MiCOL1B were localized in the nucleus and had transcriptional activation activity in yeast. Overexpression of MiCOL1A and MiCOL1B resulted in significantly delayed flowering time in Arabidopsis. Furthermore, we also found that overexpression of MiCOL1A and MiCOL1B enhanced drought tolerance in transgenic Arabidopsis. The results demonstrated that MiCOL1A and MiCOL1B are not only involved in flowering regulation but also play a role in the stress response of plants.


Assuntos
Flores/fisiologia , Mangifera , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Mangifera/genética , Mangifera/fisiologia , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia
4.
Cancer ; 97(7): 1732-6, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12655530

RESUMO

BACKGROUND: Nonsteroidal antiinflammatory drugs (NSAIDs) inhibit the development of lung tumors in experimental animals. To the authors' knowledge there are little data regarding whether regular use of NSAIDs reduces the risk of developing lung carcinoma in humans. METHODS: The association between lung carcinoma risk and regular use of NSAIDs, including aspirin, was evaluated in a hospital-based case-control study of 1038 patients and 1002 controls. RESULTS: The relative risk estimate of lung carcinoma associated with using NSAIDs 3 times a week or more for 1 or more years demonstrated an odds ratio (OR) of 0.68 (95% confidence interval [95% CI], 0.53-0.89). Results were similar when separated by lung histologic type. The association varied by smoking status. The OR was 1.28 (95% CI, 0.73-2.25) in never-smokers and 0.60 (95% CI 0.45-0.80) in ever-smokers. The smoking-specific risk estimates for aspirin were similar to those for all NSAIDs. CONCLUSIONS: The results of the current study suggest a possible chemoprotective benefit with the use of NSAIDs among individuals who are former or current smokers.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Carcinoma/prevenção & controle , Neoplasias Pulmonares/prevenção & controle , Idoso , Anti-Inflamatórios não Esteroides/administração & dosagem , Aspirina/farmacologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Risco , Fumar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA