Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(24): e2321991121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838012

RESUMO

The endoplasmic reticulum (ER) undergoes degradation by selective macroautophagy (ER-phagy) in response to starvation or the accumulation of misfolded proteins within its lumen. In yeast, actin assembly at sites of contact between the cortical ER (cER) and endocytic pits acts to displace elements of the ER from their association with the plasma membrane (PM) so they can interact with the autophagosome assembly machinery near the vacuole. A collection of proteins tether the cER to the PM. Of these, Scs2/22 and Ist2 are required for cER-phagy, most likely through their roles in lipid transport, while deletion of the tricalbins, TCB1/2/3, bypasses those requirements. An artificial ER-PM tether blocks cER-phagy in both the wild type (WT) and a strain lacking endogenous tethers, supporting the importance of cER displacement from the PM. Scs2 and Ist2 can be cross-linked to the selective cER-phagy receptor, Atg40. The COPII cargo adaptor subunit, Lst1, associates with Atg40 and is required for cER-phagy. This requirement is also bypassed by deletion of the ER-PM tethers, suggesting a role for Lst1 prior to the displacement of the cER from the PM during cER-phagy. Although pexophagy and mitophagy also require actin assembly, deletion of ER-PM tethers does not bypass those requirements. We propose that within the context of rapamycin-induced cER-phagy, Scs2/22, Ist2, and Lst1 promote the local displacement of an element of the cER from the cortex, while Tcb1/2/3 act in opposition, anchoring the cER to the plasma membrane.


Assuntos
Autofagia , Membrana Celular , Retículo Endoplasmático , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplasmático/metabolismo , Autofagia/fisiologia , Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
2.
Heliyon ; 10(9): e30044, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698981

RESUMO

To minimize the global pandemic COVID-19 spread, understanding the possible transmission routes of SARS-CoV-2 and discovery of novel antiviral drugs are necessary. We describe here that the virus can infect ocular surface limbal epithelial, but not other regions. Limbal supports wild type and mutant SARS-CoV-2 entry and replication depending on ACE2, TMPRSS2 and possibly other receptors, resulting in slight CPE and arising IL-6 secretion, which symbolizes conjunctivitis in clinical symptoms. With this limbal model, we have screened two natural product libraries and discovered several unreported drugs. Our data reveal important commonalities between COVID-19 and ocular infection with SARS-CoV-2, and establish an ideal cell model for drug screening and mechanism research.

3.
ACS Omega ; 9(18): 20547-20556, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737059

RESUMO

As a sustainable, nontoxic and environmentally friendly cyanide-free gold leaching agent, thiosulfate has been applied to some extent in the field of hydrometallurgy. However, the difficult recovery of gold ions in gold leaching solutions limits further application of thiosulfate gold leaching technology. This study demonstrated the feasibility of gold recovery by sodium dimethyldithiocarbamate (SDD) precipitation and recycling of ammonia and a lixiviant in solution. SDD achieved the purpose of recovering gold by forming granular precipitates with gold ions in solution. It can almost completely recover gold ions in 2.5-17.34 mg/L of gold leaching solution within 1 min at 25 °C, in which a gold recovery capacity of 7.99 kg/t is achieved. The leaching rate of gold ore did not change significantly after recycling the residual ammonia and thiosulfate in the leaching solution after gold recovery by SDD, and its leaching rate basically remained at 81%. The mechanism of SDD recovering Au was determined to involve the ligand exchange of SDD- and Au[(S2O3)2]3-. Moreover, the interaction mechanism between SDD and Au(I) was further validated by density functional theory calculations. Considering its low cost, simple technology, and environmental friendliness, the SDD precipitation process has the potential for large-scale application in gold recovery from thiosulfate gold leaching solutions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38797755

RESUMO

Thiosulfate gold leaching is one of the most promising green cyanide-free gold extraction processes; however, the difficulty of recovering Au(I) from the leaching system hinders its further development. This study prepared aminoguanidine-functionalized microspheres (AGMs) via a one-step reaction involving nucleophilic substitution between aminoguanidine hydrochloride and chloromethylated polystyrene microspheres and used AGMs to adsorb Au(I) from thiosulfate solutions. Scanning electron microscopy, Brunauer-Emmett-Teller analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to analyze the structure and properties of AGMs. Experiments were designed to investigate the effects of pH, temperature, initial Au(I), and thiosulfate concentrations on the gold adsorption performance of AGMs. Results demonstrated that AGMs can efficiently adsorb Au(I) from thiosulfate solutions in a wide pH range. The adsorption process conforms to the pseudo-second-order kinetic model and Langmuir isotherm model, with a maximum capacity of 22.03 kg/t. Acidic thiourea is an effective desorbent, and after four adsorption-desorption cycles, the adsorption rate of Au(I) by AGMs is 78.63%, which shows AGMs have good cyclic application potential. Based on the results of characterization, experiments, and density functional theory calculations, the mechanism for the adsorption of [Au(S2O3)2]3- on AGMs involves anion exchange. Importantly, AGMs exhibited satisfactory adsorption property for Au(I) in practical Cu2+-NH3(en)-S2O32- systems. This study provided experimental reference for the recovery of Au(I) from thiosulfate solution.

5.
6.
Nat Microbiol ; 9(5): 1340-1355, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605174

RESUMO

Although the significance of chemical modifications on RNA is acknowledged, the evolutionary benefits and specific roles in human immunodeficiency virus (HIV-1) replication remain elusive. Most studies have provided only population-averaged values of modifications for fragmented RNAs at low resolution and have relied on indirect analyses of phenotypic effects by perturbing host effectors. Here we analysed chemical modifications on HIV-1 RNAs at the full-length, single RNA level and nucleotide resolution using direct RNA sequencing methods. Our data reveal an unexpectedly simple HIV-1 modification landscape, highlighting three predominant N6-methyladenosine (m6A) modifications near the 3' end. More densely installed in spliced viral messenger RNAs than in genomic RNAs, these m6As play a crucial role in maintaining normal levels of HIV-1 RNA splicing and translation. HIV-1 generates diverse RNA subspecies with distinct m6A ensembles, and maintaining multiple of these m6As on its RNAs provides additional stability and resilience to HIV-1 replication, suggesting an unexplored viral RNA-level evolutionary strategy.


Assuntos
Adenosina , HIV-1 , RNA Viral , Replicação Viral , HIV-1/genética , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Replicação Viral/genética , Splicing de RNA , Análise de Sequência de RNA/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Infecções por HIV/virologia , Transcriptoma
7.
Acta Trop ; 249: 107046, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866727

RESUMO

Hemorrhagic fever with renal syndrome (HFRS) is a significant public health problem in Hubei Province, China, where a novel strain of orthohantavirus, HV004, was reported in 2012. However, no systematic study has investigated the prevalence and variation of orthohantavirus in rodents and humans. Herein, 2137 small mammals were collected from ten HFRS epidemic areas in Hubei Province from 2012 to 2022, and 143 serum samples from patients with suspected hemorrhagic fever were collected from two hospitals from 2017 to 2021. Orthohantavirus RNA was recovered from 134 lung tissue samples from five rodent species, with a 6.27 % prevalence, and orthohantavirus was detected in serum samples from 25 patients. Genetic analyses revealed that orthohantavirus hantanense (HTNV), orthohantavirus seoulense (SEOV), and orthohantavirus dabieshanense (DBSV) are co-circulating in rodents in Hubei, and HTNV and SEOV were identified in patient serum. Phylogenetic analysis showed that most of the HTNV sequences were clustered with HV004, indicating that HV004-like orthohantavirus was the main HNTV subtype in rodents. Two genetic reassortments and six recombination events were observed in Hubei orthohantaviruses. In summary, this study identified the diversity of orthohantaviruses circulating in Hubei over the past decade, with the HV004-like subtype being the main genotype in rodents and patients. These findings highlight the need for continued attention and focus on orthohantaviruses, especially concerning newly identified strains.


Assuntos
Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Vírus de RNA , Animais , Humanos , Febre Hemorrágica com Síndrome Renal/epidemiologia , Filogenia , Orthohantavírus/genética , Roedores , China/epidemiologia
8.
Vaccine ; 41(49): 7482-7490, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37953099

RESUMO

BACKGROUND: Hantaan virus (HTNV, Orthohantavirus hantanensae species, Hantaviridae family) is the main etiological agent responsible for hemorrhagic fever with renal syndrome (HFRS). The novel HTNV may pose a potential danger to the control and prevention of HFRS in China, which highlights the importance of vaccine development in public health management. In previous studies, our laboratory discovered and successfully isolated a new HTNV strain, HV004 strain, from Apodemus agrarius captured in an epidemic area in Hubei, China. METHODS: An initial biological and pathogenicity characterization of HTNV 76-118 (standard train), HV114 strain (a clinical isolate from Hubei province in 1986), and the novel isolate HV004 strain from the epidemic areas of Hubei province were performed in susceptible cells and in vivo. An experimental HV004 strain inactivated vaccine was prepared, and its corresponding immunogenicity was analyzed in BALB/c mice. RESULTS: HV004 strain had a similar but higher pathogenicity than HTNV 76-118 and HV114 in suckling mice. A subcutaneous vaccination (s.c.) with the inactivated HTNV vaccine adjuvanted with aluminum, followed by a challenge intraperitoneally with 106 FFU/ml HTNV, afforded full protection against an HTNV challenge. All immunized mice in every group elicited serum neutralizing antibodies with increasing dosages, which may protect mice from HTNV infection. A dose-dependent stimulation index of splenocytes was also observed in immunized mice. The percentage of IFN-γ-producing CD3+CD8+ T cells was significantly higher in the spleens of immunized mice than in those of control mice. CONCLUSIONS: These findings suggest that the inactivated HTNV vaccine may stimulate mice to produce high levels of antibodies with neutralization activity and elicit specific anti-HTNV humoral and cellular immune responses in BALB/c mice against the prevalent strain of HTNV in south central China.


Assuntos
Doenças Transmissíveis , Vírus Hantaan , Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Camundongos , Animais , Febre Hemorrágica com Síndrome Renal/prevenção & controle , Febre Hemorrágica com Síndrome Renal/epidemiologia , Virulência , Vacinas de Produtos Inativados , Linfócitos T CD8-Positivos , Anticorpos Antivirais , Infecções por Hantavirus/prevenção & controle
9.
PLoS Negl Trop Dis ; 17(9): e0011654, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721962

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV), an etiological agent causing febrile human disease was identified as an emerging tick-borne bunyavirus. The clinical disease characteristics and case fatality rates of SFTSV may vary across distinct regions and among different variant genotypes. From 2018 to 2022, we surveyed and recruited 202 severe fever with thrombocytopenia syndrome (SFTS) patients in Hubei Province, a high-incidence area of the epidemic, and conducted timely and systematic research on the disease characteristics, SFTSV diversity, and the correlation between virus genome variation and clinical diseases. Our study identified at least 6 genotypes of SFTSV prevalent in Hubei Province based on the analysis of the S, M, and L genome sequences of 88 virus strains. Strikingly, the dominant genotype of SFTSV was found to change during the years, indicating a dynamic shift in viral genetic diversity in the region. Phylogenetic analysis revealed the genetic exchange of Hubei SFTSV strains was relatively frequent, including 3 reassortment strains and 8 recombination strains. Despite the limited sample size, SFTSV C1 genotype may be associated with higher mortality compared to the other four genotypes, and the serum amyloid A (SAA) level, an inflammatory biomarker, was significantly elevated in these patients. Overall, our data summarize the disease characteristics of SFTSV in Hubei Province, highlight the profound changes in viral genetic diversity, and indicate the need for in-depth monitoring and exploration of the relationship between viral mutations and disease severity.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Infecções por Bunyaviridae/epidemiologia , Filogenia , Phlebovirus/genética , China/epidemiologia , Variação Genética
10.
Virology ; 586: 105-114, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531695

RESUMO

COVID-19 is a global health problem caused by SARS-CoV-2, which has led to over 600 million infections and 6 million deaths. Developing novel antiviral drugs is of pivotal importance to slow down the epidemic swiftly. In this study, we identified five azo compounds as effective antiviral drugs to SARS-CoV-2, and mechanism study revealed their targets for impeding viral particles' ability to bind to host receptors. Direct Blue 53, which displayed the strongest inhibitory impact, inhibited five mutant strains at micromole. In vitro, mechanism study demonstrated Direct Blue 53 inhibited viral infection through interaction with the spike of SARS-CoV-2. And 25 mg/kg/d compound treatment showed 50% or 60% survival protection against lethal Delta or Omicron BA.2 infection in vivo. Taken together, our results demonstrate that azo compounds with dimethyl-biphenyl-diyl-bis(azo)bis structure may be promising anti-SARS-CoV-2 drug candidates, which provide practicable therapies with the aid of structural optimizations and further research.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Compostos Azo/farmacologia , Glicoproteína da Espícula de Coronavírus
11.
Am J Vet Res ; 84(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37308156

RESUMO

OBJECTIVE: Orthohantaviruses (genus Orthohantavirus, family Hantaviridae of order Bunyavirales) are rodent-borne viruses causing 2 human diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which are mainly prevalent in Eurasia and the Americas, respectively. We initiated this study to investigate and analyze the Orthohantaviruses infection in rodent reservoirs and humans in the Hubei Province of China from 1984 to 2010. SAMPLE: The study included 10,314 mouse and 43,753 human serum samples. PROCEDURES: In this study, we analyzed the incidence of Orthohantavirus infection in humans and observed changes in rodent reservoirs in Hubei Province. RESULTS: The results indicated that although the incidence of HFRS declined from the 1990s, the human inapparent infection did not decrease dramatically. Although elements of the disease ecology have changed over the study period, Apodemus agrarius and Rattus norvegicus remain the major species and a constituent ratio of Rattus norvegicus increased. Rodent population density fluctuated between 16.65% and 2.14%, and decreased quinquennially, showing an obvious downward trend in recent years. The average orthohantaviruses-carrying rate was 6.36%, of which the lowest rate was 2.92% from 2006 to 2010. The analysis of rodent species composition showed that Rattus norvegicus and Apodemus agrarius were the dominant species over time (68.6% [1984 to 1987] and 90.4% [2000 to 2011]), while the composition and variety of other species decreased. The density of rodents was closely related to the incidence of HFRS (r = 0.910, P = .032). CLINICAL RELEVANCE: Our long-term investigation demonstrated that the occurrence of HFRS is closely related to rodent demographic patterns. Therefore, rodent monitoring and rodent control measures for prevention against HFRS in Hubei are warranted.


Assuntos
Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Humanos , Ratos , Camundongos , Animais , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/veterinária , Incidência , Reservatórios de Doenças/veterinária , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/veterinária , China/epidemiologia , Murinae
12.
Dalton Trans ; 52(21): 7182-7195, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37162285

RESUMO

Gold is an essential precious metal with exceptional properties. Thus, azole-functionalized microspheres (PS-3-AT) were prepared by grafting 3-amino-1,2,4-triazole (3-AT) into chloromethyl polystyrene beans (PS-Cl) and used as a novel adsorbent for the gold(I)-thiosulfate complex. The effects of initial gold concentration, thiosulfate concentration, temperature, and pH on the Au(S2O3)23- adsorption process over PS-3-AT were investigated. In this study, PS-3-AT was considered an effective adsorbent for Au(I) recovery from a thiosulfate solution, demonstrating that PS-3-AT completely adsorbed Au(S2O3)23- with an adsorption capacity of 39.8 kg t-1 achieved during multistage adsorption testing. Through adsorption kinetics and isotherm studies, the pseudo-second-order and Freundlich models well describe the adsorption process of PS-3-AT for Au(I), also suggesting the exothermic nature. Furthermore, SEM, FT-IR spectroscopy, BET, and XPS techniques were used to characterize the surface and structural properties of the samples. Notably, a reliable adsorption mechanism was developed that proposed the formation of the -NH+Cl- group during the grafting process and Cl- exchange with Au(S2O3)23- to achieve Au(I) capture. Moreover, quantum chemistry calculations and the independent gradient model (IGM) were adopted to visualize the interaction between PS-3-AT and Au(S2O3)23- at an atomic level. The desorption ratio was 97.9% while 2 M NaCl was used as the desorbent, and regeneration with PS-3-AT was achieved after five cycles. Therefore, the facile synthetic method and adsorption properties of PS-3-AT for the gold(I)-thiosulfate complex are satisfactory, which is valuable for the development of thiosulfate gold leaching technologies.

13.
Nat Sci Sleep ; 14: 2075-2089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440180

RESUMO

Objective: To investigate whether continuous positive airway pressure (CPAP) treatment would change EEG activities associated with cyclic alternating pattern (CAP subtype A1, A2, and A3) and non-CAP (NCAP) during non-rapid eye movement sleep stage 3 (N3) in patients with obstructive sleep apnea (OSA). Methods: The effects of CPAP treatment on the percentages of sleep stage N3 occupied by the CAP and NCAP, power of EEG waves in the CAP and NCAP were examined in 18 patients with moderate-to-severe OSA undergoing polysomnographic recordings. Results: Apnea and hypopnea index during sleep stage N3 was positively correlated with ratios of phases A2 and A3 duration to total phase A duration [Phase (A2+A3) /Phase A] and negatively correlated with phase A1/phase A. With CPAP treatment, percentages of sleep stage N3 occupied by total CAPs and subtypes A2 and A3, as well as CAP A2 and CAP A3 indexes were significantly decreased while percentages of sleep stage N3 occupied by NCAP (NCAP/N3) and CAP A1 index were significantly increased. In addition, CPAP treatment significantly decreased percentage of respiratory events associated CAPs and increased percentage of non-respiratory related CAPs. Moreover, absolute and relative delta power was significantly increased during phase A1, unchanged during phase A2 and phase B2, and significantly decreased during phases B1, A3 and B3. The absolute power of faster frequency EEG waves in CAPs showed a general trend of decrease. The absolute and relative power of delta waves with amplitudes ≥75 µV, but not <75 µV, was significantly increased. Conclusion: CPAP treatment improves the sleep quality in OSA patients mainly by increasing delta power and decreasing power of higher frequency waves during phase A1, and decreasing CAP A2 and A3 indexes as well as increasing NCAP/N3 and power of delta waves with amplitudes ≥75 µV during NCAP.

14.
Contact (Thousand Oaks) ; 5: 25152564221125613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147729

RESUMO

Lipid transfer proteins mediate the exchange of lipids between closely apposed membranes at organelle contact sites and play key roles in lipid metabolism, membrane homeostasis, and cellular signaling. A recently discovered novel family of lipid transfer proteins, which includes the VPS13 proteins (VPS13A-D), adopt a rod-like bridge conformation with an extended hydrophobic groove that enables the bulk transfer of membrane lipids for membrane growth. Loss of function mutations in VPS13A and VPS13C cause chorea acanthocytosis and Parkinson's disease, respectively. VPS13A and VPS13C localize to multiple organelle contact sites, including endoplasmic reticulum (ER) - lipid droplet (LD) contact sites, but the functional roles of these proteins in LD regulation remains mostly unexplored. Here we employ CRISPR-Cas9 genome editing to generate VPS13A and VPS13C knockout cell lines in U-2 OS cells via deletion of exon 2 and introduction of an early frameshift. Analysis of LD content in these cell lines revealed that loss of either VPS13A or VPS13C results in reduced LD abundance under oleate-stimulated conditions. These data implicate two lipid transfer proteins, VPS13A and VPS13C, in LD regulation.

15.
STAR Protoc ; 3(3): 101616, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990737

RESUMO

N 6-methyladenosine (m6A) modification of human immunodeficiency virus type 1 (HIV-1) RNA plays a critical role in regulating viral replication and evasion of innate immunity. Here, we describe a protocol for the production of HIV-1 with altered m6A levels by manipulating the expression of m6A demethylases in HIV-1 producer cells. RNA from purified virions is analyzed by northern blot and dot blot for m6A levels prior to use in downstream assays to determine the function of m6A modification of viral RNA. For complete details on the use and execution of this protocol, please refer to Chen et al. (2021).


Assuntos
HIV-1 , Adenosina/metabolismo , Genômica , HIV-1/genética , Humanos , RNA Viral/genética , Replicação Viral/genética
16.
Virol Sin ; 37(1): 1-10, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35234622

RESUMO

Although tremendous efforts have been made to prevent and treat HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. The combination antiretroviral therapy (cART), although able to suppress HIV-1 replication, cannot eliminate the proviral DNA integrated into the human genome and thus requires lifelong treatment that may lead to various side effects. In recent years, clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) related gene-editing systems have been developed and designed as effective ways to treat HIV-1 infection. However, new gene-targeting tools derived from or functioning like CRISPR/Cas9, including base editor, prime editing, SHERLOCK, DETECTR, PAC-MAN, ABACAS, pfAGO, have been developed and optimized for pathogens detection and diseases correction. Here, we summarize recent studies on HIV-1/AIDS gene therapy and provide more gene-editing targets based on studies relating to the molecular mechanism of HIV-1 infection. We also identify the strategies and potential applications of these new gene-editing technologies for HIV-1/AIDS treatment in the future. Moreover, we discuss the caveats and problems that should be addressed before the clinical use of these versatile CRISPR-based gene targeting tools. Finally, we offer alternative solutions to improve the practice of gene targeting in HIV-1/AIDS gene therapy.


Assuntos
Síndrome da Imunodeficiência Adquirida , HIV-1 , Síndrome da Imunodeficiência Adquirida/terapia , Sistemas CRISPR-Cas/genética , Edição de Genes , Terapia Genética , Genoma Humano , HIV-1/genética , Humanos
17.
Elife ; 102021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34467852

RESUMO

The endoplasmic reticulum (ER) is composed of sheets and tubules. Here we report that the COPII coat subunit, SEC24C, works with the long form of the tubular ER-phagy receptor, RTN3, to target dominant-interfering mutant proinsulin Akita puncta to lysosomes. When the delivery of Akita puncta to lysosomes was disrupted, large puncta accumulated in the ER. Unexpectedly, photobleach analysis indicated that Akita puncta behaved as condensates and not aggregates, as previously suggested. Akita puncta enlarged when either RTN3 or SEC24C were depleted, or when ER sheets were proliferated by either knocking out Lunapark or overexpressing CLIMP63. Other ER-phagy substrates that are segregated into tubules behaved like Akita, while a substrate (type I procollagen) that is degraded by the ER-phagy sheets receptor, FAM134B, did not. Conversely, when ER tubules were augmented in Lunapark knock-out cells by overexpressing reticulons, ER-phagy increased and the number of large Akita puncta was reduced. Our findings imply that segregating cargoes into tubules has two beneficial roles. First, it localizes mutant misfolded proteins, the receptor, and SEC24C to the same ER domain. Second, physically restraining condensates within tubules, before they undergo ER-phagy, prevents them from enlarging and impacting cell health.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proinsulina/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lisossomos , Camundongos Knockout , Agregados Proteicos , Dobramento de Proteína
18.
PLoS Pathog ; 17(3): e1009421, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690734

RESUMO

N6-methyladenosine (m6A) is a prevalent RNA modification that plays a key role in regulating eukaryotic cellular mRNA functions. RNA m6A modification is regulated by two groups of cellular proteins, writers and erasers that add or remove m6A, respectively. HIV-1 RNA contains m6A modifications that modulate viral infection and gene expression in CD4+ T cells. However, it remains unclear whether m6A modifications of HIV-1 RNA modulate innate immune responses in myeloid cells that are important for antiviral immunity. Here we show that m6A modification of HIV-1 RNA suppresses the expression of antiviral cytokine type-I interferon (IFN-I) in differentiated human monocytic cells and primary monocyte-derived macrophages. Transfection of differentiated monocytic U937 cells with HIV-1 RNA fragments containing a single m6A-modification significantly reduced IFN-I mRNA expression relative to their unmodified RNA counterparts. We generated HIV-1 with altered m6A levels of RNA by manipulating the expression of the m6A erasers (FTO and ALKBH5) or pharmacological inhibition of m6A addition in virus-producing cells, or by treating HIV-1 RNA with recombinant FTO in vitro. HIV-1 RNA transfection or viral infection of differentiated U937 cells and primary macrophages demonstrated that HIV-1 RNA with decreased m6A levels enhanced IFN-I expression, whereas HIV-1 RNA with increased m6A modifications had opposite effects. Our mechanistic studies indicated that m6A of HIV-1 RNA escaped retinoic acid-induced gene I (RIG-I)-mediated RNA sensing and activation of the transcription factors IRF3 and IRF7 that drive IFN-I gene expression. Together, these findings suggest that m6A modifications of HIV-1 RNA evade innate immune sensing in myeloid cells.


Assuntos
Infecções por HIV/imunologia , HIV-1/metabolismo , Interferon Tipo I/biossíntese , Células Mieloides/virologia , Processamento Pós-Transcricional do RNA/imunologia , RNA Viral/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Regulação da Expressão Gênica/imunologia , HIV-1/imunologia , Humanos , Imunidade Inata/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Monócitos/metabolismo , Monócitos/virologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , RNA Viral/imunologia
19.
Biosens Bioelectron ; 177: 112932, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429204

RESUMO

In the present study, we upgraded Pyrococcus furiosus Argonaute (PfAgo) mediated nucleic acid detection method and established a highly sensitive and accurate molecular diagnosis platform for the large-scale screening of COVID-19 infection. Briefly, RT-PCR was performed with the viral RNA extracted from nasopharyngeal or oropharyngeal swabs as template to amplify conserved regions in the viral genome. Next, PfAgo, guide DNAs and molecular beacons in appropriate buffer were added to the PCR products, followed by incubating at 95 °C for 20-30 min. Subsequently, the fluorescence signal was detected. This method was named as SARS-CoV-2 PAND. The whole procedure is accomplished in approximately an hour with the using time of the Real-time fluorescence quantitative PCR instrument shortened from >1 h to only 3-5 min per batch in comparison with RT-qPCR, hence the shortage of the expensive Real-time PCR instrument is alleviated. Moreover, this platform was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The diagnostic results of clinic samples with SARS-CoV-2 PAND displayed 100% consistence with RT-qPCR test.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Proteínas Arqueais/genética , Proteínas Argonautas/genética , Técnicas Biossensoriais/métodos , COVID-19/virologia , Humanos , Limite de Detecção , Nasofaringe/virologia , Mutação Puntual , Pyrococcus furiosus/genética , RNA Viral/genética , Proteínas Recombinantes/genética , SARS-CoV-2/genética
20.
Cell Res ; 31(1): 62-79, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612200

RESUMO

Autophagy is a conserved process that delivers cytosolic substances to the lysosome for degradation, but its direct role in the regulation of antiviral innate immunity remains poorly understood. Here, through high-throughput screening, we discovered that CCDC50 functions as a previously unknown autophagy receptor that negatively regulates the type I interferon (IFN) signaling pathway initiated by RIG-I-like receptors (RLRs), the sensors for RNA viruses. The expression of CCDC50 is enhanced by viral infection, and CCDC50 specifically recognizes K63-polyubiquitinated RLRs, thus delivering the activated RIG-I/MDA5 for autophagic degradation. The association of CCDC50 with phagophore membrane protein LC3 is confirmed by crystal structure analysis. In contrast to other known autophagic cargo receptors that associate with either the LIR-docking site (LDS) or the UIM-docking site (UDS) of LC3, CCDC50 can bind to both LDS and UDS, representing a new type of cargo receptor. In mouse models with RNA virus infection, CCDC50 deficiency reduces the autophagic degradation of RIG-I/MDA5 and promotes type I IFN responses, resulting in enhanced viral resistance and improved survival rates. These results reveal a new link between autophagy and antiviral innate immune responses and provide additional insights into the regulatory mechanisms of RLR-mediated antiviral signaling.


Assuntos
Proteína DEAD-box 58/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Vírus de RNA/fisiologia , Receptores Imunológicos/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , NF-kappa B/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA