Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Med Microbiol ; 72(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37389575

RESUMO

In South East Asia, Streptococcus agalactiae ST283 causes sepsis in healthy adults. Raw freshwater fish consumption is the only known risk factor. These two case reports are the first from Malaysia. Although they cluster with Singapore ST283, the epidemiology is complicated by the flow of people and fish across borders.


Assuntos
Sepse , Streptococcus agalactiae , Adulto , Animais , Humanos , Malásia/epidemiologia , Streptococcus agalactiae/genética , Água Doce , Fatores de Risco
2.
Mol Microbiol ; 114(6): 991-1005, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32808719

RESUMO

The outer membrane (OM) is an essential component of the Gram-negative bacterial envelope that protects the cells against external threats. To maintain a functional OM, cells require distinct mechanisms to ensure balance of proteins and lipids in the membrane. Mutations in OM biogenesis and/or homeostasis pathways often result in permeability defects, but how molecular changes in the OM affect barrier function is unclear. Here, we seek potential mechanism(s) that can alleviate permeability defects in Escherichia coli cells lacking the Tol-Pal complex, which accumulate excess PLs in the OM. We identify mutations in enterobacterial common antigen (ECA) biosynthesis that re-establish OM barrier function against large hydrophilic molecules, yet did not restore lipid homeostasis. Furthermore, we demonstrate that build-up of biosynthetic intermediates, but not loss of ECA itself, contributes to the rescue. This suppression of OM phenotypes is unrelated to known effects that accumulation of ECA intermediates have on the cell wall. Finally, we reveal that an unusual diacylglycerol pyrophosphoryl-linked lipid species also accumulates in ECA mutants, and might play a role in the rescue phenotype. Our work provides insights into how OM barrier function can be restored independent of lipid homeostasis, and highlights previously unappreciated effects of ECA-related species in OM biology.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Membrana Externa Bacteriana/fisiologia , Escherichia coli/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Permeabilidade da Membrana Celular , Parede Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Homeostase , Mutação , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo
3.
BMC Genomics ; 17(1): 837, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27784279

RESUMO

BACKGROUND: Mycobacteria, along with exospore forming Streptomyces, belong to the phylum actinobacteria. Mycobacteria are generally believed to be non-differentiating. Recently however, we showed that the mycobacterial model organism M. smegmatis is capable of forming different types of morphologically distinct resting cells. When subjected to starvation conditions, cells of M. smegmatis exit from the canonical cell division cycle, segregate and compact their chromosomes, and become septated and multi-nucleoided. Under zero nutrient conditions the differentiation process terminates at this stage with the formation of Large Resting Cells (LARCs). In the presence of traces of carbon sources this multi-nucleoided cell stage completes cell division and separates into Small Resting Cells (SMRCs). Here, we carried out RNA-seq profiling of SMRC and LARC development to characterize the transcriptional program underlying these starvation-induced differentiation processes. RESULTS: Changes among the top modulated genes demonstrated that SMRCs and LARCs undergo similar transcriptional changes. The formation of multi-nucleoided cells (i.e. LARCs and the LARC-like intermediates observed during SMRC formation) was accompanied by upregulation of septum formation functions FtsZ, FtsW, and PbpB, as well as the DNA translocase FtsK. The observed compaction of chromosomes was accompanied by an increase of the transcript level of the DNA binding protein Hlp, an orthologue of the Streptomyces spore-specific chromosome condensation protein HupS. Both SMRC and LARC development were accompanied by similar temporal expression patterns of candidate regulators, including the transcription factors WhiB2, WhiB3, and WhiB4, which are orthologues of the Streptomyces sporulation regulators WhiB, WhiD and WblA, respectively. CONCLUSIONS: Transcriptional analyses of the development of mycobacterial resting cell types suggest that these bacteria harbor a novel differentiation program and identify a series of potential regulators. This provides the basis for the genetic dissection of this actinobacterial differentiation process.


Assuntos
Ciclo Celular/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/genética , Transcriptoma , Análise por Conglomerados , Perfilação da Expressão Gênica , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA