Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Commun Biol ; 7(1): 960, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117859

RESUMO

Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.


Assuntos
Transtorno Depressivo Maior , Transcriptoma , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/fisiopatologia , Feminino , Masculino , Adulto , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Perfilação da Expressão Gênica
2.
Nat Ment Health ; 2(2): 164-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948238

RESUMO

Major depressive disorder (MDD) is a heterogeneous clinical syndrome with widespread subtle neuroanatomical correlates. Our objective was to identify the neuroanatomical dimensions that characterize MDD and predict treatment response to selective serotonin reuptake inhibitor (SSRI) antidepressants or placebo. In the COORDINATE-MDD consortium, raw MRI data were shared from international samples (N = 1,384) of medication-free individuals with first-episode and recurrent MDD (N = 685) in a current depressive episode of at least moderate severity, but not treatment-resistant depression, as well as healthy controls (N = 699). Prospective longitudinal data on treatment response were available for a subset of MDD individuals (N = 359). Treatments were either SSRI antidepressant medication (escitalopram, citalopram, sertraline) or placebo. Multi-center MRI data were harmonized, and HYDRA, a semi-supervised machine-learning clustering algorithm, was utilized to identify patterns in regional brain volumes that are associated with disease. MDD was optimally characterized by two neuroanatomical dimensions that exhibited distinct treatment responses to placebo and SSRI antidepressant medications. Dimension 1 was characterized by preserved gray and white matter (N = 290 MDD), whereas Dimension 2 was characterized by widespread subtle reductions in gray and white matter (N = 395 MDD) relative to healthy controls. Although there were no significant differences in age of onset, years of illness, number of episodes, or duration of current episode between dimensions, there was a significant interaction effect between dimensions and treatment response. Dimension 1 showed a significant improvement in depressive symptoms following treatment with SSRI medication (51.1%) but limited changes following placebo (28.6%). By contrast, Dimension 2 showed comparable improvements to either SSRI (46.9%) or placebo (42.2%) (ß = -18.3, 95% CI (-34.3 to -2.3), P = 0.03). Findings from this case-control study indicate that neuroimaging-based markers can help identify the disease-based dimensions that constitute MDD and predict treatment response.

3.
Food Chem X ; 23: 101586, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39036481

RESUMO

Yuanbaoshancha (YBSC) is characterized as a new wild tea relative morphologically and phytochemically distinguished from the closest wild tea plants Rongjiangcha (Camellia yungkiangensis, RJC) and Tulecha (Camellia costata, TLC). YBSC young leaves contain higher tea polyphenol and theobromine contents but lower caffeine and theanine as compared with RJC, TLC, and other tea landraces and modern cultivars. The major alkaloid detected in YBSC, TLC, and RJC is theobromine while caffeine is a minor; the primary catechins in YBSC leaves are non-galloylated catechins, significantly different from Camellia sinensis and other low-caffeine tea resources. The unique phytochemical profiles featured YBSC black tea with extremely lower caffeine and higher theobromine, as well as unique flavors and health benefits. This botanical characterization of YBSC and two related low-caffeine wild tea resources lays a foundation for future better utilization for the production of a highly valuable natural low-caffeine/high-theobromine tea. Chemical compounds: Caffeine (PubChem CID: 2519); Theobromine (PubChem CID: 5429); Catechins (PubChem CID: 9064); Epigallocatechin gallate (PubChem CID: 65064); Theanine (PubChem CID: 439378); Jasmone (PubChem CID: 1549018); cis-3-Hexenyl hexanoate (PubChem CID: 5352543); Hexyl 2-methylbutanoate (PubChem CID: 24838).

4.
Psychoradiology ; 4: kkae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799033

RESUMO

Background: Social intelligence refers to an important psychosocial skill set encompassing an array of abilities, including effective self-expression, understanding of social contexts, and acting wisely in social interactions. While there is ample evidence of its importance in various mental health outcomes, particularly social anxiety, little is known on the brain correlates underlying social intelligence and how it can mitigate social anxiety. Objective: This research aims to investigate the functional neural markers of social intelligence and their relations to social anxiety. Methods: Data of resting-state functional magnetic resonance imaging and behavioral measures were collected from 231 normal students aged 16 to 20 years (48% male). Whole-brain voxel-wise correlation analysis was conducted to detect the functional brain clusters related to social intelligence. Correlation and mediation analyses explored the potential role of social intelligence in the linkage of resting-state brain activities to social anxiety. Results: Social intelligence was correlated with neural activities (assessed as the fractional amplitude of low-frequency fluctuations, fALFF) among two key brain clusters in the social cognition networks: negatively correlated in left superior frontal gyrus (SFG) and positively correlated in right middle temporal gyrus. Further, the left SFG fALFF was positively correlated with social anxiety; brain-personality-symptom analysis revealed that this relationship was mediated by social intelligence. Conclusion: These results indicate that resting-state activities in the social cognition networks might influence a person's social anxiety via social intelligence: lower left SFG activity → higher social intelligence → lower social anxiety. These may have implication for developing neurobehavioral interventions to mitigate social anxiety.

5.
Brain Imaging Behav ; 18(4): 741-752, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38407738

RESUMO

Suicide is a major concern for health, and depression is an established proximal risk factor for suicide. This study aimed to investigate white matter features associated with suicide. We constructed white matter structural networks by deterministic tractography via diffusion tensor imaging in 51 healthy controls, 47 depressed patients without suicide plans or attempts and 56 depressed patients with suicide plans or attempts. Then, graph theory analysis was used to measure global and nodal network properties. We found that local efficiency was decreased and path length was increased in suicidal depressed patients compared to healthy controls and non-suicidal depressed patients; moreover, the clustering coefficient was decreased in depressed patients compared to healthy controls; and the global efficiency and normalized characteristic path length was increased in suicidal depressed patients compared to healthy controls. Similarly, compared with those in non-suicidal depressed patients, nodal efficiency in the thalamus, caudate, medial orbitofrontal cortex, hippocampus, olfactory cortex, supplementary motor area and Rolandic operculum was decreased. In summary, compared with those of non-suicidal depressed patients, the structural connectome of suicidal depressed patients exhibited weakened integration and segregation and decreased nodal efficiency in the fronto-limbic-basal ganglia-thalamic circuitry. These alterations in the structural networks of depressed suicidal brains provide insights into the underlying neurobiology of brain features associated with suicide.


Assuntos
Encéfalo , Transtorno Depressivo Maior , Imagem de Tensor de Difusão , Vias Neurais , Tentativa de Suicídio , Substância Branca , Humanos , Masculino , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Imagem de Tensor de Difusão/métodos , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ideação Suicida , Conectoma , Adulto Jovem , Pessoa de Meia-Idade
6.
Biol Psychiatry ; 96(6): 435-444, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316331

RESUMO

BACKGROUND: Although brain structural covariance network (SCN) abnormalities have been associated with suicidal thoughts and behaviors (STBs) in individuals with major depressive disorder (MDD), previous studies have reported inconsistent findings based on small sample sizes, and underlying transcriptional patterns remain poorly understood. METHODS: Using a multicenter magnetic resonance imaging dataset including 218 MDD patients with STBs, 230 MDD patients without STBs, and 263 healthy control participants, we established individualized SCNs based on regional morphometric measures and assessed network topological metrics using graph theoretical analysis. Machine learning methods were applied to explore and compare the diagnostic value of morphometric and topological features in identifying MDD and STBs at the individual level. Brainwide relationships between STBs-related connectomic alterations and gene expression were examined using partial least squares regression. RESULTS: Group comparisons revealed that SCN topological deficits associated with STBs were identified in the prefrontal, anterior cingulate, and lateral temporal cortices. Combining morphometric and topological features allowed for individual-level characterization of MDD and STBs. Topological features made a greater contribution to distinguishing between patients with and without STBs. STBs-related connectomic alterations were spatially correlated with the expression of genes enriched for cellular metabolism and synaptic signaling. CONCLUSIONS: These findings revealed robust brain structural deficits at the network level, highlighting the importance of SCN topological measures in characterizing individual suicidality and demonstrating its linkage to molecular function and cell types, providing novel insights into the neurobiological underpinnings and potential markers for prediction and prevention of suicide.


Assuntos
Encéfalo , Conectoma , Transtorno Depressivo Maior , Imageamento por Ressonância Magnética , Ideação Suicida , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Masculino , Feminino , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Pessoa de Meia-Idade , Aprendizado de Máquina , Adulto Jovem
7.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37745373

RESUMO

The functional connectome of the human brain represents the fundamental network architecture of functional interdependence in brain activity, but its normative growth trajectory across the life course remains unknown. Here, we aggregate the largest, quality-controlled multimodal neuroimaging dataset from 119 global sites, including 33,809 task-free fMRI and structural MRI scans from 32,328 individuals ranging in age from 32 postmenstrual weeks to 80 years. Lifespan growth charts of the connectome are quantified at the whole cortex, system, and regional levels using generalized additive models for location, scale, and shape. We report critical inflection points in the non-linear growth trajectories of the whole-brain functional connectome, particularly peaking in the fourth decade of life. Having established the first fine-grained, lifespan-spanning suite of system-level brain atlases, we generate person-specific parcellation maps and further show distinct maturation timelines for functional segregation within different subsystems. We identify a spatiotemporal gradient axis that governs the life-course growth of regional connectivity, transitioning from primary sensory cortices to higher-order association regions. Using the connectome-based normative model, we demonstrate substantial individual heterogeneities at the network level in patients with autism spectrum disorder and patients with major depressive disorder. Our findings shed light on the life-course evolution of the functional connectome and serve as a normative reference for quantifying individual variation in patients with neurological and psychiatric disorders.

8.
Metabolites ; 13(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512491

RESUMO

The flower is the reproductive organ of the tea plant, while it is also processed into different kinds of products and thus of great significance to be utilized. In this study, the non-volatile secondary metabolites in the internal and external petals of white, white and pink, and pink tea flowers were studied using a widely targeted metabolomics method with ultra-high liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A total of 429 metabolites were identified, including 195 flavonoids, 121 phenolic acids, 40 alkaloids, 29 lignans and coumarins, 19 tannins, 17 terpenoids, and 8 other metabolites. The metabolites in the internal and external petals of different colored flowers showed great changes in flavonoids. Most flavonoids and all tannins in the internal petals were higher compared with the external petals. Some phenolic acids were more accumulated in the external petals, while others showed opposite trends. The pink tea flower contained more flavonoids, alkaloids, lignans, coumarins, terpenoids, and tannins compared with white tea flowers. In addition, cyanidin-3-O-glucoside was more accumulated in the external petals of the pink flower, indicating that anthocyanin may be the main reason for the color difference between the pink and white tea flower. The enriched metabolic pathways of different colored flowers were involved in flavonoid biosynthesis, glycine, serine and threonine metabolism, glycerophospholipid metabolism, and phenylpropanoid biosynthesis. The findings of this study broaden the current understanding of non-volatile compound changes in tea plants. It is also helpful to lay a theoretical foundation for integrated applications of tea flowers.

9.
Biol Psychiatry ; 94(12): 936-947, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295543

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a highly heterogeneous disorder that typically emerges in adolescence and can occur throughout adulthood. Studies aimed at quantitatively uncovering the heterogeneity of individual functional connectome abnormalities in MDD and identifying reproducibly distinct neurophysiological MDD subtypes across the lifespan, which could provide promising insights for precise diagnosis and treatment prediction, are still lacking. METHODS: Leveraging resting-state functional magnetic resonance imaging data from 1148 patients with MDD and 1079 healthy control participants (ages 11-93), we conducted the largest multisite analysis to date for neurophysiological MDD subtyping. First, we characterized typical lifespan trajectories of functional connectivity strength based on the normative model and quantitatively mapped the heterogeneous individual deviations among patients with MDD. Then, we identified neurobiological MDD subtypes using an unsupervised clustering algorithm and evaluated intersite reproducibility. Finally, we validated the subtype differences in baseline clinical variables and longitudinal treatment predictive capacity. RESULTS: Our findings indicated great intersubject heterogeneity in the spatial distribution and severity of functional connectome deviations among patients with MDD, which inspired the identification of 2 reproducible neurophysiological subtypes. Subtype 1 showed severe deviations, with positive deviations in the default mode, limbic, and subcortical areas and negative deviations in the sensorimotor and attention areas. Subtype 2 showed a moderate but converse deviation pattern. More importantly, subtype differences were observed in depressive item scores and the predictive ability of baseline deviations for antidepressant treatment outcomes. CONCLUSIONS: These findings shed light on our understanding of different neurobiological mechanisms underlying the clinical heterogeneity of MDD and are essential for developing personalized treatments for this disorder.


Assuntos
Conectoma , Transtorno Depressivo Maior , Adolescente , Humanos , Adulto , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
10.
Neuroimage Clin ; 37: 103359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36878150

RESUMO

Accumulating evidence showed that major depressive disorder (MDD) is characterized by a dysfunction of serotonin neurotransmission. Raphe nuclei are the sources of most serotonergic neurons that project throughout the brain. Incorporating measurements of activity within the raphe nuclei into the analysis of connectivity characteristics may contribute to understanding how neurotransmitter synthesized centers are involved in thepathogenesisof MDD. Here, we analyzed the resting-state functional magnetic resonance imaging (RS-fMRI) dataset from 1,148 MDD patients and 1,079 healthy individuals recruited across nine centers. A seed-based analysis with the dorsal raphe and median raphe nuclei was performed to explore the functional connectivity (FC) alterations. Compared to controls, for dorsal raphe, the significantly decreased FC linking with the right precuneus and median cingulate cortex were found; for median raphe, the increased FC linking with right superior cerebellum (lobules V/VI) was found in MDD patients. In further exploratory analyzes, MDD-related connectivity alterations in dorsal and median raphe nuclei in different clinical factors remained highly similar to the main findings, indicating these abnormal connectivities are a disease-related alteration. Our study highlights a functional dysconnection pattern of raphe nuclei in MDD with multi-site big data. These findings help improve our understanding of the pathophysiology of depression and provide evidence of the theoretical foundation for the development of novel pharmacotherapies.


Assuntos
Transtorno Depressivo Maior , Humanos , Encéfalo , Giro do Cíngulo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Núcleos da Rafe/diagnóstico por imagem
11.
J Affect Disord ; 328: 47-57, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36781144

RESUMO

BACKGROUND: Functional connectome studies have revealed widespread connectivity alterations in major depressive disorder (MDD). However, the low frequency bandpass filtering (0.01-0.08 Hz or 0.01-0.1 Hz) in most studies have impeded our understanding on whether and how these alterations are affected by frequency of interest. METHODS: Here, we performed frequency-resolved (0.01-0.06 Hz, 0.06-0.16 Hz and 0.16-0.24 Hz) connectome analyses using a large-sample resting-state functional MRI dataset of 1002 MDD patients and 924 healthy controls from seven independent centers. RESULTS: We reported significant frequency-dependent connectome alterations in MDD in left inferior parietal, inferior temporal, precentral, and fusiform cortices and bilateral precuneus. These frequency-dependent connectome alterations are mainly derived by abnormalities of medium- and long-distance connections and are brain network-dependent. Moreover, the connectome alteration of left precuneus in high frequency band (0.16-0.24 Hz) is significantly associated with illness duration. LIMITATIONS: Multisite harmonization model only removed linear site effects. Neurobiological underpinning of alterations in higher frequency (0.16-0.24 Hz) should be further examined by combining fMRI data with respiration, heartbeat and blood flow recordings in future studies. CONCLUSIONS: These results highlight the frequency-dependency of connectome alterations in MDD and the benefit of examining connectome alteration in MDD under a wider frequency band.


Assuntos
Conectoma , Transtorno Depressivo Maior , Humanos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Córtex Cerebral
12.
BMC Psychiatry ; 23(1): 59, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690972

RESUMO

BACKGROUND: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS: We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION: We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Encéfalo , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Inteligência Artificial
13.
Eur Child Adolesc Psychiatry ; 32(10): 1957-1967, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35737106

RESUMO

As a stable personality construct, trait emotional intelligence (TEI) refers to a battery of perceived emotion-related skills that make individuals behave effectively to adapt to the environment and maintain well-being. Abundant evidence has consistently shown that TEI is important for the outcomes of many mental health issues, particularly depression and anxiety. However, the neural substrates involved in TEI and the underlying neurobehavioral mechanism of how TEI reduces depression and anxiety symptoms remain largely unknown. Herein, resting-state functional magnetic resonance imaging and a group of behavioral measures were applied to examine these questions among a large sample comprising 231 general adolescent students aged 16-20 years (52% female). Whole-brain correlation analysis and prediction analysis demonstrated that TEI was negatively linked with spontaneous activity (measured with the fractional amplitude of low-frequency fluctuations) in the bilateral medial orbitofrontal cortex (OFC), a critical site implicated in emotion-related processes. Furthermore, structural equation modeling analysis found that TEI mediated the link of OFC spontaneous activity to depressive and anxious symptoms. Collectively, the current findings present new evidence for the neurofunctional bases of TEI and suggest a potential "brain-personality-symptom" pathway for alleviating depressive and anxious symptoms among students in late adolescence.


Assuntos
Ansiedade , Córtex Pré-Frontal , Humanos , Adolescente , Feminino , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Emoções , Personalidade , Encéfalo , Inteligência Emocional , Imageamento por Ressonância Magnética/métodos
14.
Front Aging Neurosci ; 14: 841696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527734

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Currently, only symptomatic management is available, and early diagnosis and intervention are crucial for AD treatment. As a recent deep learning strategy, generative adversarial networks (GANs) are expected to benefit AD diagnosis, but their performance remains to be verified. This study provided a systematic review on the application of the GAN-based deep learning method in the diagnosis of AD and conducted a meta-analysis to evaluate its diagnostic performance. A search of the following electronic databases was performed by two researchers independently in August 2021: MEDLINE (PubMed), Cochrane Library, EMBASE, and Web of Science. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was applied to assess the quality of the included studies. The accuracy of the model applied in the diagnosis of AD was determined by calculating odds ratios (ORs) with 95% confidence intervals (CIs). A bivariate random-effects model was used to calculate the pooled sensitivity and specificity with their 95% CIs. Fourteen studies were included, 11 of which were included in the meta-analysis. The overall quality of the included studies was high according to the QUADAS-2 assessment. For the AD vs. cognitively normal (CN) classification, the GAN-based deep learning method exhibited better performance than the non-GAN method, with significantly higher accuracy (OR 1.425, 95% CI: 1.150-1.766, P = 0.001), pooled sensitivity (0.88 vs. 0.83), pooled specificity (0.93 vs. 0.89), and area under the curve (AUC) of the summary receiver operating characteristic curve (SROC) (0.96 vs. 0.93). For the progressing MCI (pMCI) vs. stable MCI (sMCI) classification, the GAN method exhibited no significant increase in the accuracy (OR 1.149, 95% CI: 0.878-1.505, P = 0.310) or the pooled sensitivity (0.66 vs. 0.66). The pooled specificity and AUC of the SROC in the GAN group were slightly higher than those in the non-GAN group (0.81 vs. 0.78 and 0.81 vs. 0.80, respectively). The present results suggested that the GAN-based deep learning method performed well in the task of AD vs. CN classification. However, the diagnostic performance of GAN in the task of pMCI vs. sMCI classification needs to be improved. Systematic Review Registration: [PROSPERO], Identifier: [CRD42021275294].

15.
Mol Psychiatry ; 27(3): 1384-1393, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35338312

RESUMO

Patients with major depressive disorder (MDD) exhibit concurrent deficits in both sensory and higher-order cognitive processing. Connectome studies have suggested a principal primary-to-transmodal gradient in functional brain networks, supporting the spectrum from sensation to cognition. However, whether this gradient structure is disrupted in patients with MDD and how this disruption associates with gene expression profiles and treatment outcome remain unknown. Using a large cohort of resting-state fMRI data from 2227 participants (1148 MDD patients and 1079 healthy controls) recruited at nine sites, we investigated MDD-related alterations in the principal connectome gradient. We further used Neurosynth, postmortem gene expression, and an 8-week antidepressant treatment (20 MDD patients) data to assess the meta-analytic cognitive functions, transcriptional profiles, and treatment outcomes related to MDD gradient alterations, respectively. Relative to the controls, MDD patients exhibited global topographic alterations in the principal primary-to-transmodal gradient, including reduced explanation ratio, gradient range, and gradient variation (Cohen's d = 0.16-0.21), and focal alterations mainly in the primary and transmodal systems (d = 0.18-0.25). These gradient alterations were significantly correlated with meta-analytic terms involving sensory processing and higher-order cognition. The transcriptional profiles explained 53.9% variance of the altered gradient pattern, with the most correlated genes enriched in transsynaptic signaling and calcium ion binding. The baseline gradient maps of patients significantly predicted symptomatic improvement after treatment. These results highlight the connectome gradient dysfunction in MDD and its linkage with gene expression profiles and clinical management, providing insight into the neurobiological underpinnings and potential biomarkers for treatment evaluation in this disorder.


Assuntos
Conectoma , Transtorno Depressivo Maior , Encéfalo , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa , Transcriptoma/genética , Resultado do Tratamento
16.
Front Psychiatry ; 13: 1041770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683989

RESUMO

Background: The house-tree-person (HTP) drawing test has received growing attention from researchers as a common projective test. However, the methods used to select and interpret drawing indicators still lack uniformity. Objective: This study aims to integrate drawing indicators into the process of screening for or classifying mental disorders by conducting a systematic review and meta-analysis of the application of the HTP test. Methods: A search of the following electronic databases was performed in May 2022: PubMed, Web of Science, Embase, EBSCO, CNKI, VIP, and Wanfang. Screening and checking of the literature were performed independently by two researchers. The empirical studies published on the use of the HTP test in mental disorders and studies providing specific data on the occurrence frequency of drawing characteristics were analyzed. A total of 30 studies were included in the meta-analysis, including 665 independent effect sizes and 6,295 participants. The strength of the association between drawing characteristics of the HTP test and the prevalence of mental disorders was measured by the ratio (OR) with a 95% CI. Publication bias was assessed using a funnel plot, Rosenthal's fail-safe number (N fs), and the trim and fill method. Results: The results revealed 50 drawing characteristics that appeared at least three times in previous studies, of which 39 were able to significantly predict mental disorders. The HTP test can be divided into the following four dimensions: house, tree, person, and the whole. These dimensions reflect the structure, size, and other characteristics of the picture. The results showed that the greatest predictor of mental disorders was the whole (OR = 4.20, p < 0.001), followed by the house (OR = 3.95, p < 0.001), the tree (OR = 2.70, p < 0.001), and the person (OR = 2.16, p < 0.001). The valid predictors can be categorized into the following four types: item absence, bizarre or twisted, excessive details, and small or simplified. The subgroup analysis showed that the affective-specific indicators included no motion, leaning house, and decorated roof; thought-specific indicators included excessive separation among items, no window, loss of facial features, and inappropriate body proportions; and common indicators of mental disorders included no additional decoration, simplified drawing, very small house, two-dimensional house, and very small tree. Conclusion: These findings can promote the standardization of the HTP test and provide a theoretical reference for the screening and clinical diagnosis of mental disorders.

18.
Artigo em Inglês | MEDLINE | ID: mdl-34119573

RESUMO

OBJECTIVE: While gastrointestinal (GI) symptoms are very common in patients with major depressive disorder (MDD), few studies have investigated the neural basis behind these symptoms. In this study, we sought to elucidate the neural basis of GI symptoms in MDD patients by analyzing the changes in regional gray matter volume (GMV) and gray matter density (GMD) in brain structure. METHOD: Subjects were recruited from 13 clinical centers and categorized into three groups, each of which is based on the presence or absence of GI symptoms: the GI symptoms group (MDD patients with at least one GI symptom), the non-GI symptoms group (MDD patients without any GI symptoms), and the healthy control group (HCs). Structural magnetic resonance images (MRI) were collected of 335 patients in the GI symptoms group, 149 patients in the non-GI symptoms group, and 446 patients in the healthy control group. The 17-item Hamilton Depression Rating Scale (HAMD-17) was administered to all patients. Correlation analysis and logistic regression analysis were used to determine if there was a correlation between the altered brain regions and the clinical symptoms. RESULTS: There were significantly higher HAMD-17 scores in the GI symptoms group than that of the non-GI symptoms group (P < 0.001). Both GMV and GMD were significant different among the three groups for the bilateral superior temporal gyrus, bilateral middle temporal gyrus, left lingual gyrus, bilateral caudate nucleus, right Fusiform gyrus and bilateral Thalamus (GRF correction, cluster-P < 0.01, voxel-P < 0.001). Compared to the HC group, the GI symptoms group demonstrated increased GMV and GMD in the bilateral superior temporal gyrus, and the non-GI symptoms group demonstrated an increased GMV and GMD in the right superior temporal gyrus, right fusiform gyrus and decreased GMV in the right Caudate nucleus (GRF correction, cluster-P < 0.01, voxel-P < 0.001). Compared to the non-GI symptoms group, the GI symptoms group demonstrated significantly increased GMV and GMD in the bilateral thalamus, as well as decreased GMV in the bilateral superior temporal gyrus and bilateral insula lobe (GRF correction, cluster-P < 0.01, voxel-P < 0.001). While these changed brain areas had significantly association with GI symptoms (P < 0.001), they were not correlated with depressive symptoms (P > 0.05). Risk factors for gastrointestinal symptoms in MDD patients (p < 0.05) included age, increased GMD in the right thalamus, and decreased GMV in the bilateral superior temporal gyrus and left Insula lobe. CONCLUSION: MDD patients with GI symptoms have more severe depressive symptoms. MDD patients with GI symptoms exhibited larger GMV and GMD in the bilateral thalamus, and smaller GMV in the bilateral superior temporal gyrus and bilateral insula lobe that were correlated with GI symptoms, and some of them and age may contribute to the presence of GI symptoms in MDD patients.


Assuntos
Transtorno Depressivo Maior/patologia , Substância Cinzenta/patologia , Dor Abdominal/etiologia , Dor Abdominal/psicologia , Adulto , Encéfalo/patologia , Escalas de Graduação Psiquiátrica Breve , Núcleo Caudado/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Lobo Temporal/patologia , Tálamo/patologia
19.
Adv Exp Med Biol ; 1305: 35-55, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33834393

RESUMO

Major depressive disorder (MDD) is frequently characterized as a disorder of the disconnection syndrome. Diffusion tensor imaging (DTI) has played a critical role in supporting this view, with much investigation providing a large amount of evidence of structural connectivity abnormalities in the disorder. Recent research on the human connectome combined neuroimaging techniques with graph theoretic methods to highlight the disrupted topological properties of large-scale structural brain networks under depression, involving global metrics (e.g., global and local efficiencies), and local nodal properties (e.g., degree and betweenness), as well as other related metrics, including a modular structure, assortativity, and (rich) hubs. Here, we review the studies of white matter networks in the case of MDD with the application of these techniques, focusing principally on the consistent findings and the clinical significance of DTI-based network research, while discussing the key methodological issues that frequently arise in the field. The already published literature shows that MDD is associated with a widespread structural connectivity deficit. Topological alteration of structural brain networks in the case of MDD points to decreased overall connectivity strength and reduced global efficiency as well as decreased small-worldness and network resilience. These structural connectivity disturbances entail potential functional consequences, although the relationship between the two is very sophisticated and requires further investigation. In summary, the present study comprehensively maps the structural connectomic disturbances in patients with MDD across the entire brain, which adds important weight to the view suggesting connectivity abnormalities of this disorder and highlights the potential of network properties as diagnostic biomarkers in the psychoradiology field. Several common methodological issues of the study of DTI-based networks are discussed, involving sample heterogeneity and fiber crossing problems and the tractography algorithms. Finally, suggestions for future perspectives, including imaging multimodality, a longitudinal study and computational connectomics, in the further study of white matter networks under depression are given. Surmounting these challenges and advancing the research methods will be required to surpass the simple mapping of connectivity changes to illuminate the underlying psychiatric pathological mechanism.


Assuntos
Transtorno Depressivo Maior , Substância Branca , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Depressão , Transtorno Depressivo Maior/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Estudos Longitudinais , Vias Neurais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
20.
Stress Health ; 37(5): 835-847, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33871902

RESUMO

Education actively helps us develop our well-being and health, but postgraduate students are at high risk of depression. The prevalence of depression symptoms varies from 6.2% to 84.7% among them, and its changes throughout the years remains unclear. The present study aimed to estimate the real prevalence of depression symptoms among postgraduate students and the changes from 1980 to 2020. Thirty-seven primary studies with 41 independent reports were included in the meta-analysis (none reports were in high-quality, three were medium-to-high quality, 20 were low-to-medium quality, and 18 were low-quality), involving 27,717 postgraduate students. The pooled prevalence of overall, mild, moderate, and severe depression symptoms was 34% (95% CI: 28-40, I2  = 98.6%), 27% (95% CI: 22-32, I2  = 85.8%), 13% (95% CI: 8-21, I2  = 97.3%), and 8% (95% CI: 6-11, I2  = 81.0%), respectively. Overall, the prevalence of depression symptoms remained relatively constant through the years following 1980 (overall: ß = -0.12, 95% CI: [-0.39, 0.15], p = 0.39; mild: ß = 0.24, 95% CI: [-0.02, 0.51], p = 0.07; moderate: ß = -0.24, 95% CI: [-0.75, 0.26], p = 0.34; severe: ß = 0.13, 95% CI: [-0.25, 0.51], p = 0.50). Doctoral students experienced more depressive symptoms than did master's students (43% vs. 27%; Q = 2.23, df = 1, p = 0.13), and studies utilising non-random sampling methods reported a higher prevalence of mild depression and lower moderate depression symptoms than those that used random sampling (overall: 34% vs. 29%; Q = 0.45, df = 1, p = 0.50; mild: 29% vs. 21%; Q = 1.69, df = 1, p = 0.19; moderate: 16% vs. 25%; Q = 1.79, df = 1, p = 0.18; severe: 8% vs. 9%; Q = 0.13, df = 1, p = 0.72) despite these differences was not statistically significant. The prevalence of depression symptoms was moderated by the measurements and the quality of primary studies. More than one-third of postgraduates reported depression symptoms, which indicates the susceptibility to mental health risk among postgraduates. School administrators, teachers, and students should take joint actions to prevent mental disorders of postgraduates from increasing in severity.


Assuntos
Depressão , Transtorno Depressivo , Depressão/epidemiologia , Humanos , Saúde Mental , Prevalência , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA