Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Bioresour Technol ; 397: 130474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395234

RESUMO

This work aims at intensifying the simultaneous removal of nitrogen and phosphorus of an integrated aerobic granular sludge (AGS) - membrane bioreactor (MBR) by Acinetobacter junii. After acclimation and enrichment in a sequencing batch reactor (SBR), Acinetobacter junii, a kind of denitrifying phosphate accumulating organism (DPAO), was successfully screened in the used SBR. Then it was verified to be capable of effectively enhancing the performance in the simultaneous removal of nitrogen and phosphorus of AGS-MBR. In the system, DPAO (Acinetobacter junii) mainly occurred in AGS, and the highest ratio even reached 22.8%, but its competitive advantages highly depend on the size of AGS. The presented results can cultivate AGS and enrich DPAO simultaneously to improve the removal of nitrogen and phosphorus of an AGS-MBR, which provide an environmentally friendly approach to upgrade traditional wastewater treatment processes.


Assuntos
Acinetobacter , Fósforo , Esgotos , Nitrogênio , Fosfatos , Reatores Biológicos , Eliminação de Resíduos Líquidos
2.
Luminescence ; 39(1): e4674, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286602

RESUMO

Recently, long persistent phosphors (LPPs) have attracted significant attention as promising candidates for biomedical applications. However, the serious decrease in luminescence intensity in tissue still remains a major challenge. Therefore, exploring more competitive LPPs and achieving reproducible tissue imaging is crucial. In this study, a new series of near-infrared (NIR) phosphors La3 Ga5 Sn1-x O14 :xCr3+ (x = 0.005-0.05) were synthesized using a high-temperature solid-state method. The as-synthesized samples were characterized using X-ray diffraction, diffuse/photoluminescence spectroscopy, fluorescence decay curves, and thermoluminescence spectroscopy. Upon excitation with ultraviolet light, strong emission bands were observed in the range 600-1200 nm with an optimal doping concentration of x = 0.02 mol. Moreover, La3 Ga5 SnO14 :Cr3+ exhibits persistent luminescence due to the presence of suitable energy traps, which prompted the phosphor to emit NIR light even after the removal of the excitation source.


Assuntos
Luminescência , Raios Ultravioleta , Difração de Raios X
3.
Chemosphere ; 346: 140594, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914050

RESUMO

In this study, monoclinic BiPO4 nanorods were fabricated by one-pot solvothermal method. Its catalytic capability in photocatalytic ozonation process was tested by degradation and mineralization of sodium dodecyl benzene sulfonate (SDBS) solution. The results demonstrated that the TOC removal rate was dramatically improved to 90.0% at 75 min for UV/O3/BiPO4 process, which was 4.9 and 3.8 times more than that of UV/BiPO4 and O3. Moreover, the pseudo-first-order kinetic constant (0.337 min-1) and mineralization rate (90.0%) for SDBS degradation using BiPO4 in UV/O3 process were 1.6 and 1.3 times as great as that of conventional TiO2 photocatalyst (0.206 min-1, 67.3%). The influence of BiPO4 dosage, O3 concentration initial pH and coexisted ions on SDBS degradation in UV/O3/BiPO4 process were also investigated. The outcome of quenching studies illustrated both ·OH and h+ contributed prominently to SDBS degradation in UV/O3/BiPO4 process, implying that high valence band position of BiPO4 could promote the synergism between photocatalysis and ozonation. The degradation pathway of SBDS was proposed by combination of intermediates analysis and DFT calculation. Real carwash wastewater was chosen as typical surfactant containing wastewater to explore the practical application of UV/O3/BiPO4 technology. During 30 min, COD and LAS removal efficiency reached 59.7% and 70.6%, respectively. The quality indices of effluent could meet the requirements for reuse of carwash water in Water Quality Standard for Urban Miscellaneous Use in China. Energy consumption in the process was calculated as 13.9 kW h m-3, which was about 3.6 and 2.2 times less than that of UV/BiPO4 and O3 process, respectively. The results suggest that UV/O3/BiPO4 system has an application potential for surfactant containing wastewater treatment or recycle.


Assuntos
Nanotubos , Ozônio , Surfactantes Pulmonares , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Tensoativos , Poluentes Químicos da Água/análise , Ozônio/análise , Purificação da Água/métodos , Oxirredução
4.
J Colloid Interface Sci ; 658: 487-496, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128192

RESUMO

In this work, a series of BiOClxBr1-x (BCB) solid solutions are facilely designed for visible-light-driven photocatalytic ozonation (PCO) degradation of florfenicol (FF) in water environments, which could add to the library of efficient, cost-effective and robust nanocatalysts for water purification. BCB solid solutions in the structure of 2D nanosheets are achieved involving the etching of BiOBr "micro-flowers" with HCl at different concentrations, allowing a removal ratio of FF up to 97.3 % within 1 h, superior to bare BiOBr and bare BiOCl. A strengthened synergistic effect between photocatalysis and ozonation is substantiated, where the separation of photo-induced charge transfer is accelerated, the band gap is tuned and the utilization efficiency of ozone is enhanced. This facilitates the production of reactive oxygen species identified as •OH, •O2-, and 1O2 that will attack the FF molecule for degradation based on three pathways.

5.
J Hazard Mater ; 460: 132357, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625293

RESUMO

Due to its low interfacial electron migration ability and highly hydrophilic, Fe-MCM-41 (FeM) had poor activity and stability during catalytic ozonation. To this end, the secondary metal Zn and Si-F group were introduced into the framework of FeM to create surface potential difference and hydrophobic sites. Comparative characterizations showed that there existed rich acid sites with great potential difference on F-Fe-Zn-MCM-41 (FFeZnM). Additionally, because of the existence of hydrophobic and electron-withdrawing Si-F unit, the electron migration ability, hydrophobicity and acidity of FFeZnM were enhanced. The greater O3 mass transfer was induced by Si-F group and O3 was directly activated at Fe and Zn Lewis acid sites into •OH, •O2- and 1O2. With •OH acting as main species, FFeZnM/O3 achieved the superior IBP removal (93.4%, 30 min) and TOC removal (46.6%, 120 min) over those of sole O3 and F-FeM/O3 processes, respectively. HCO3-, Cl-, NO3- and SO42- hindered IBP degradation by FFeZnM/O3, but high concentration humic acid (HA) exhibited promotion by forming HA-IBP complex. IBP degradation by FFeZnM/O3 was enhanced with tap water, river water, and effluent from the secondary sedimentation tank of the sewage plant acting as medium. This study proposed an innovative approach to catalyst design for catalytic ozonation.

6.
Water Res ; 243: 120419, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536250

RESUMO

This work gave insights into the life-cycle of aerobic granular sludge (AGS) by tracing its heterogeneity in the basic properties at different stages in a closed system (a continuous flow membrane bioreactor, MBR), including physical and chemical characteristics and microbial communities. The results indicate that the entire life-cycle consists of the following four stages, namely, the initial, growing, mature and cleaved stages, where multiple AGS properties synergistically affect the rheological properties of the AGS over its life-cycle. The storage modulus (G') of AGS reached its maximum value at the mature stage, whose value was significantly and positively correlated with the protein (PN) in extracellular polymeric substances (EPS) and granule size, specifically the peak area of granule size distribution, but this value was strongly and negatively correlated with the roughness. The AGS at the mature stage would be more vulnerable to be destroyed than that at other stages under the condition of higher shear strain, such as γ = 50%, which was associated with larger granule size and fewer polysaccharide (PS)-related functional groups (especially in the soluble microbial products (SMPs) in the outermost layer of AGS), and the decrease in PS was correlated with a higher relative abundance of Chloroflexi. Additionally, the value of shear strain that AGS was subjected to had a good linear correlation (R2=0.993) with the Young's modulus, which indicated the ability of AGS to resist deformation improved with increasing values of shear strain.


Assuntos
Microbiota , Esgotos , Esgotos/química , Aerobiose , Polissacarídeos , Reatores Biológicos , Eliminação de Resíduos Líquidos
7.
Proc Natl Acad Sci U S A ; 120(9): e2216879120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802414

RESUMO

Atomic dispersion of metal catalysts on a substrate accounts for the increased atomic efficiency of single-atom catalysts (SACs) in various catalytic schemes compared to the nanoparticle counterparts. However, lacking neighboring metal sites has been shown to deteriorate the catalytic performance of SACs in a few industrially important reactions, such as dehalogenation, CO oxidation, and hydrogenation. Metal ensemble catalysts (Mn), an extended concept to SACs, have emerged as a promising alternative to overcome such limitation. Inspired by the fact that the performance of fully isolated SACs can be enhanced by tailoring their coordination environment (CE), we here evaluate whether the CE of Mn can also be manipulated in order to enhance their catalytic activity. We synthesized a set of Pd ensembles (Pdn) on doped graphene supports (Pdn/X-graphene where X = O, S, B, and N). We found that introducing S and N onto oxidized graphene modifies the first shell of Pdn converting Pd-O to Pd-S and Pd-N, respectively. We further found that the B dopant significantly affected the electronic structure of Pdn by serving as an electron donor in the second shell. We examined the performance of Pdn/X-graphene toward selective reductive catalysis, such as bromate reduction, brominated organic hydrogenation, and aqueous-phase CO2 reduction. We observed that Pdn/N-graphene exhibited superior performance by lowering the activation energy of the rate-limiting step, i.e., H2 dissociation into atomic hydrogen. The results collectively suggest controlling the CE of SACs in an ensemble configuration is a viable strategy to optimize and enhance their catalytic performance.

8.
Sci Total Environ ; 858(Pt 3): 160097, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368392

RESUMO

Single atomic Cu catalysts (SACs Cu@C) anchored by carbon skeleton and chlorine atom was synthesized by hydrolyzing Cu-MOFs and then pickled by aqua-regia to remove Cu nanoparticles (NPs Cu). Comparative characterizations revealed that SACs Cu@C was a hierarchically porous nanostructure and Cu dispersed uniformly throughout the carbon skeletons. With less active components, SACs Cu@C behaved better in activating PMS over NPs Cu@C on ibuprofen removal (91.3 % versus 30.2 % in 30 min). Two Cu coordination environments were found by EXAF and DFT calculation, including four-coordinated Cu with 4C atoms and six-coordinated Cu with 4Cu and 2Cl atoms. The obvious interfacial electron delivery between PMS and SACs Cu@C was found, which was enhanced by Cl atom. Cu(I)/Cu(II) redox cycle would donate electron to peroxy bond of PMS for generating OH, SO4- and O2-. But electron transferred in opposite direction when PMS bonded to Cu atom through its terminal oxygen atom in sulfate, which formed 1O2. IBP degradation proceeded through both radical and non-radical route. IBP degradation was inhibited with the presence of TBA, methanol and furfuryl alcohol but accelerated by p-BQ, which could accelerate OH generation. Two degradation pathways were deducted. This study provided a new insight into catalysts designed for PMS activation.


Assuntos
Carbono , Cloro , Ibuprofeno , Teoria da Densidade Funcional
9.
J Hazard Mater ; 443(Pt B): 130302, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347142

RESUMO

Heterogeneous catalytic ozonation (HCO) was a promising water purification technology. Designing novel metal-based catalysts and exploring their structural-activity relationship continued to be a hot topic in HCO. Herein, we reviewed the recent development of metal-based catalysts (including monometallic and polymetallic catalysts) in HCO. Regulation of metal based active sites (surface hydroxyl groups, Lewis acid sites, metal redox cycle and surface defect) and their key roles in activating O3 were explored. Advantage and disadvantage of conventional characterization techniques on monitoring metal active sites were claimed. In situ electrochemical characterization and DFT simulation were recommended as supplement to reveal the metal active species. Though the ambiguous interfacial behaviors of O3 at these active sites, the existence of interfacial electron migration was beyond doubt. The reported metal-based catalysts mainly served as electron donator for O3, which resulted in the accumulation of oxidized metal and reduced their activity. Design of polymetallic catalysts could accelerate the interfacial electron migration, but they still faced with the dilemma of sluggish Me(n+m)+/Men+ redox cycle. Alternative strategies like coupling active metal species with mesoporous silicon materials, regulating surface hydrophobic/hydrophilic properties, polaring surface electron distribution, coupling HCO process with photocatalysis and H2O2 were proposed for future research.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Ozônio/química , Peróxido de Hidrogênio , Poluentes Químicos da Água/química , Domínio Catalítico , Purificação da Água/métodos , Catálise , Metais
10.
Chemosphere ; 292: 133544, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34998848

RESUMO

Fe-MCM-41 had been widely used as ozonation catalyst, however, the existence of large amount of hydrophilic silanol hindered its interfacial reaction with O3 and pollutants. To solve this problem, F-Fe-MCM-41 was synthesized by co-doping F and Fe into the framework of MCM-41 to replace silanol with Si-F groups through a one-step hydrothermal method. F introduced hydrophobic sites which contributed to more ibuprofen (IBP) chemisorption on the surface of F-Fe-MCM-41. Moreover, doping F also enhanced the acidity, which accelerated O3 decomposition into •OH. F-Fe-MCM-41/O3 exhibited notably activity with 96.6% IBP removal efficiency within 120 min, while only 78.5% and 80.9% in O3 alone and Fe-MCM-41/O3, respectively. Surface Lewis acid sites and metal hydroxyl groups were considered as important factors for O3 activation and •OH generation. F-Fe-MCM-41 exhibited excellent catalytic performance under acidic and alkaline conditions. Comparative experiments revealed that F doping improved the interfacial reaction, especially the interfacial electron transfer, which resulted in the high catalytic activity of F-Fe-MCM-41. F-Fe-MCM-41 possessed good stability and reusability, with only 5.7% decline for IBP removal in five successive cycles. Furthermore, the possible degradation path of IBP was proposed according to DFT calculation and GC-MS analysis.


Assuntos
Ozônio , Poluentes Químicos da Água , Catálise , Flúor , Ferro , Ácidos de Lewis , Dióxido de Silício , Poluentes Químicos da Água/análise
11.
J Hazard Mater ; 428: 128222, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032960

RESUMO

N vacancies, hydrophobic sites and electron rich zone were simply regulated by doping F into g-C3N4 (CN) to accelerate photocatalytic ozonation of PFOA. Activity of F-CN was superior to that of CN, with 74.3% PFOA removal by F-CN/Vis/O3 but only 57.1% by CN/Vis/O3. Experimental results and theory simulations suggested that the photogenerated hole (hvb+) oxidation with the help of N vacancies was vital for PFOA degradation. N vacancies on both CN and F-CN would trap O atom of PFOA and seize electron from α -CF2 group, which made PFOA more easily to be oxidized. Doping of F narrowed band gap, lowered the valence band position and enhanced the oxidation potential of hvb+. The hydrophobic sites would accelerate the mass transfer of O3 and PFOA, enhance O3's single electron reduction with ecb- to generate hydroxyl radicals (•OH) and reduce the recombination of hvb+-ecb-. Under the joint function of hvb+, N vacancies and •OH, PFOA degradation in F-CN/Vis/O3 proceeded through the gradually shortening of perfluoroalky chain and loss of CF2 unit. The acute and chronic toxicity of generated short-chain perfluorocarboxylic acid toward fish, green algae daphnid were predicted by ECOSAR. And the toxicity change of solutions was examined by luminescent bacteria.


Assuntos
Radical Hidroxila , Ozônio , Elétrons , Oxirredução
12.
Chemosphere ; 278: 130412, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33838421

RESUMO

Herein, we demonstrated the construction of three-dimensional (3D) cerium oxide (CeOx)/SBA-16 nanocomposites for efficient removal of bisphenol A (BPA) via a catalytic ozonation, with a high BPA mineralization up to 60.9% in 90 min. On one hand, the CeOx/SBA-16 mesoporous structured materials presented large surface area and uniform pore distribution, which was conducive to the adsorption of transformation by-products (TBPs) and then, the mass transfer. On the other hand, CeOx/SBA-16 could enhance the ozone utilization efficiency and meanwhile facilitate the formation of OH, the main reactive oxygen species. Through the exploration of dissoluble organic matters and the identification of the reaction intermediates, two BPA degradation pathways were proposed. This approach reported here will benefit the design and construction of mesoporous structured materials for catalytic elimination of hazards to remediate the environment.


Assuntos
Ozônio , Poluentes Químicos da Água , Compostos Benzidrílicos , Catálise , Fenóis , Dióxido de Silício , Poluentes Químicos da Água/análise
13.
Chemosphere ; 263: 128279, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297223

RESUMO

The massive emission of bisphenol A (BPA) has imposed adverse effects on both ecosystems and human health. Herein, nanoporous MoS2@BiVO4 photoanodes were fabricated on fluorine-doped tin oxide (FTO) substrates for photoelectrocatalytic degradation of BPA. The photocurrent density of the optimized photoanode (MoS2-3@BiVO4) was 5.4 times as that of BiVO4 photoanode at 1.5 V vs. Ag/AgCl under visible light illumination, which was ascribed to the reduced recombination of photogenerated charge carriers of the well-designed hybrid structure. 10 ppm of BPA could be completely degraded in 75 min by MoS2-3@BiVO4 photoanode, with a bias of 1.5 V vs. Ag/AgCl and 100 mM of NaCl as the supporting electrolyte. The electron paramagnetic resonance (EPR) and free radicals scavenging experiments confirmed that chlorine oxide radical (•ClO) played a dominant role in the degradation of BPA. 14 intermediates were detected and identified during photoelectrocatalytic degradation of BPA by MoS2-3@BiVO4 photoanode and 3 pathways were proposed based on the above intermediates. The hybrid film exhibited high stability and reusability, and promising application potential in photoelectrocatalytic degradation of organic pollutants in aqueous solution.


Assuntos
Cloretos , Nanoporos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Compostos Benzidrílicos , Bismuto , Cloro , Ecossistema , Luz , Molibdênio , Fenóis , Vanadatos
14.
J Hazard Mater ; 406: 124766, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33310326

RESUMO

The low efficiency of peroxone (O3/H2O2) at acidic and neutral pH restrained its application in water purification. To overcome this shortcoming, CeOX@SiO2 with large surface area, abundant surface oxygen vacancies (Vo), Lewis sites (L sites) and high Ce(III)/Ce(IV) ratio were synthesized to change the traditional electron transfer pathway between O3 and H2O2. Vo was facile in absorbing H2O2 to form Vo-H2O2 and L sites were capable of absorbing O3 to form L-O3. The electron at Vo could be donated to Vo-H2O2 and generate Vo-HO2-, which then effectively triggered the decomposition of L-O3 at CeOX@SiO2's interface and O3 in bulk solution. The electron transfer at the solid-liquid interface with the help of Ce3+/Ce4+ redox cycle and Vo was pH independent and different from the traditional electron transfer of peroxone reaction. Nitrobenzene (NB) mineralization was promoted to 92.5% in CeOX@SiO2-peroxone, but only 63.8% TOC was removed in tradition peroxone process. Moreover, CeOX@SiO2-peroxone had a wide pH application range. NB's degradation in CeOX@SiO2-peroxone process followed the co-oxidation mechanism of superoxide free (•O2-) and hydroxyl radical (•OH). The finding of this study could broaden the popularization of peroxone in water treatment and provided a strategy for catalyst design.

15.
Environ Sci Pollut Res Int ; 27(28): 35638-35649, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32613501

RESUMO

Metal-modified adsorbent had appreciable adsorption capacity and fast rate toward norfloxacin (NOR), but limited studies focused on the influence of metal species on adsorbents' performance. In this study, Fe and Cu were chosen to be loaded on mesoporous silicon SBA-15 for absorbing NOR and investigating the key function of metal species. An obvious synergy effect was found between active species and supporter. A high adsorption capacity (44.8 mg g-1 for Fe/SBA-15 and 78.3 mg g-1 for Cu/SBA-15) and short equilibration time (< 2 h) were obtained. NOR adsorptions on two processes were described well by pseudo-second-order kinetics, particle diffusion equation, and Langmuir isotherm. The adsorption processes were spontaneous, but NOR adsorption on Cu/SBA-15 was endothermic while its adsorption on Fe/SBA-15 was exothermic. HA had dual effect on the adsorption efficiency, with a promotion at low HA concentration but an inhibition at high concentration. NOR removal increased first and then decreased with pH ascension from 3 to 9 for both Fe/SBA-15 and Cu/SBA-15, achieving maximum at pH = 7. Comparative characterizations and experiments suggested that NOR adsorption processes were dominated by electrostatic interactions, n-π EDA interactions, hydrogen bonds, and surface complex. The greater n-π EDA and complex efficiency of Cu with NOR resulted in the superior performance of Cu/SBA-15. Graphical abstract.


Assuntos
Norfloxacino , Poluentes Químicos da Água/análise , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Metais , Silício , Dióxido de Silício
16.
J Colloid Interface Sci ; 578: 461-470, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535428

RESUMO

The removal of diclofenac (DCF) that causes risks to the environment and human health remains a great challenge due to the inefficiency of conventional physical methods. In this work, an efficient catalytic ozonation of DCF is achieved from a novel iron-doped SBA-16 (Fe-SBA-16) three-dimensional (3D) mesoporous structure. The Fe-SBA-16/ozonation (O3) system exhibits enhanced catalytic activity towards DCF mineralization (up to 79.3% in 1.5 h), which is 1.2 times of its counterpart, Fe-MCM-41, and 2.4 times of the sole ozonation without catalysts. The unique 3D mesoporous structures accelerate the mass transfer and meanwhile result in higher ozone utilization efficiency for more effective generation of active species, hence enhancing the DCF mineralization efficiency. We believe the well-defined Fe-SBA-16 catalyst coupled with their enhanced catalytic ozonation performances will provide new insights into the construction of mesoporous structured materials to eliminate hazards in aqueous solutions for the environment remediation.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Catálise , Diclofenaco , Humanos , Ferro , Dióxido de Silício , Poluentes Químicos da Água/análise
17.
J Hazard Mater ; 393: 122387, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32135371

RESUMO

Heterogeneous catalytic ozonation had met the bottlenecks when treating low concentration but high toxic pollutants: (i) the low mass transfer efficiency of ozone and pollutants to hydrophilic catalyst; (ii) the negative impact of coexisted water matrixes. Herein, to enhance the mass transfer efficiency of reactants toward hydrophilic Fe-MCM-41 as well as enhance the interfacial reaction, the fluoride planting Fe-MCM-41 (F-Fe-MCM-41) was synthesized and employed as catalyst in catalytic ozonation for nitrobenzene (NB). Both NB and TOC removal were promoted in F-Fe-MCM-41/O3 with 99.0 % NB removal in 60 min and 88.6 % TOC removal in 120 min, which were superior to the degradation efficiency by O3 and Fe-MCM-41/O3. FTIR, EPR, Mössbauer spectra, 29Si NMR, 19F NMR et al verified that the replacement of non-reactive silanols (-Si-OH) of Fe-MCM-41 with SiF groups could enhance its hydrophobicity, Lewis acidity and mass transfer effect. Comparative characterizations, experiments and theoretical calculations verified that interfacial reaction played the major role over liquid phase reaction for NB degradation in F-Fe-MCM-41/O3. Moreover, the strengthened interfacial reaction also reduced the OH scavenging effect of water matrix, such as humic acid and carbonate. The interfacial adjustment method proposed in this study provided a novel insight into catalyst design and water treatment process.

18.
Chemosphere ; 235: 470-480, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31272007

RESUMO

Mesoporous Fe-Cu@SiO2 core-shell catalyst was synthesized and assessed for its catalytic activity in the ozonation of salicylic acid (SA). The synthesized catalyst was characterized by XRD, TEM, SEM, XPS, H2-TPR, etc. Fe-Cu@SiO2 exhibited a regular spherical shape and had the surface area at 1216 m2 g-1. The wrapping of metal components and their strong interaction prevented metal leaching. Fe-Cu@SiO2 showed the highest activity for SA mineralization when compared with Fe@SiO2 and Cu@SiO2. In Fe-Cu@SiO2/O3, 88% TOC was removed, which was 2.5 times as much as that in sole ozonation. SA degradation efficiency in Fe-Cu@SiO2/O3 increased with initial pH. O3, ·OH and H2O2 were the main reactive oxygen species accounting for SA mineralization. Due to their scavenging effect of ·OH, NH4+, NO3- and humic acids would inhibit the degradation efficiency of Fe-Cu@SiO2/O3. Acidic sites, oxygen vacancies and the Fe-Cu(I/II) electron transfer were responsible for ozone decomposition and ·OH generation. SA mineralization proceeded through the ·OH mechanism. Moreover, SA mineralization in O3 and Fe-Cu@SiO2/O3 both exhibited a two-stage pseudo first-order kinetics (stage I: 0-45 min; stage II: 45-120 min). The degradation intermediates were detected to investigate the reaction pathway. ORP and EEM were used to monitor the degradation process. Great difference was found for carboxylic acids accumulation in O3 and Fe-Cu@SiO2/O3. The accelerated removal of oxalic acid and humic acid-like intermediates were responsible for the two-stage pseudo first-order kinetics.


Assuntos
Ácido Salicílico/química , Poluentes Químicos da Água/química , Catálise , Peróxido de Hidrogênio , Cinética , Metais , Ácido Oxálico , Ozônio/química , Dióxido de Silício
19.
Chemosphere ; 206: 615-621, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29778939

RESUMO

Fe-MCM-48 catalyst with a three-dimensional cubic pore structure was directly synthesized via a hydrothermal method, and the mineralization efficiency of diclofenac (DCF) in the catalytic ozonation process (Fe-MCM-48/O3) was assessed. X-ray diffraction (XRD), N2 adsorption desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) characterizations revealed that Fe existed in the framework of MCM-48, and Fe-MCM-48 possessed a large surface area and a highly ordered cubic mesoporous structure, which could accelerate reactants and products diffusion. Regarding mineralization efficiency, the addition of Fe-MCM-48 significantly improved total organic carbon (TOC) removal, and approximately 49.9% TOC were removed through the Fe-MCM-48/O3 process at 60 min, which was 2.0 times higher than that in single ozonation. Due to this catalyst's superior structure, Fe-MCM-48 showed the better catalytic activity compared with Fe-MCM-41 and Fe loaded MCM-48 (Fe/MCM-48, Fe existed on the surface of MCM-48). DCF removal in the Fe-MCM-48/O3 process was primarily based on ozone direct oxidation. The improvement of mineralization efficiency was attributed to the function of generated hydroxyl radicals (•OH), which indicated that the presence of Fe-MCM-48 accelerated ozone decomposition. Moreover, the negatively charged surface of Fe-MCM-48 and the proper pH value of the DCF solution played an essential role in OH generation.


Assuntos
Diclofenaco/uso terapêutico , Ferro/química , Ozônio/química , Poluentes Químicos da Água/análise , Difração de Raios X/métodos , Catálise , Diclofenaco/farmacologia , Oxirredução
20.
Front Chem ; 6: 17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468153

RESUMO

HIGHLIGHTS Fe incorporation significantly accelerated the adsorption of CPX on MCM-41.Fe leaching can be ignored when pH was higher than 4.0.pH played an important role in CPX adsorption on Fe-MCM-41.Co-effect of CPX and metal cations on Fe-MCM-41 was investigated. Fe-MCM-41s with various molar ratios of silicon to iron (20, 40, 80, and 160) were prepared to investigate adsorption properties of ciprofloxacin hydrochloride (CPX) in aqueous solutions. Fe-MCM-41s were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms, and infrared spectroscopy (FT-IR). Effects of silicon-iron ratio, adsorbent dosage, pH, and temperature were conducted to explore the adsorption mechanism of CPX on Fe-MCM-41. The results showed that the introduction of iron facilitated the absorption quantity for CPX from 20.04 to 83.33 mg g-1 at 120 min of reaction time, which was mainly attributed to surface complexation. The promotion of hydrophobic effect, electrostatic interactions, and π-π electron donor-acceptor interaction also played coordinate roles in the adsorption process. The experimental kinetic data followed both the pseudo-second-order and intra-particle diffusion models, while the adsorption isotherm data fit well to Freundlich model at high temperature. Thermodynamic study showed that the adsorption was spontaneous. Under the effect of electrostatic interaction, pH of the solution strongly affected CPX adsorption. Five representative metal cations (Ca, Cu, Ni, Pb, and Cd) were chosen to study the effects on CPX adsorption and their complexation. The inhibiting effect of metal cations on CPX adsorption was sequenced in the order of Cu > Ni > Pb > Cd > Ca, which followed the same order as the complexation stability constants between CPX and cations. The Fe-MCM-41 adsorbent possessed excellent reusability for 4 cycles use, suggesting a potential applicability of Fe-MCM-41 to remove CPX in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA