Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.070
Filtrar
1.
J Colloid Interface Sci ; 678(Pt A): 284-291, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39208756

RESUMO

The irreversibility and low utilization of Zn anode stemming from the corrosion and dendrite growth have largely limited the commercialization of aqueous zinc batteries. Here, a carbonyl-rich polymer interphase of zinc polyacrylate (ZPAA) is spontaneously in-situ constructed on Zn anode to address the above-mentioned dilemmas. The ZPAA interlayer enables fast transport kinetics of Zn2+ and tailors the interfacial electric field for realizing the uniform Zn deposition due to superior zincophilicity, high Zn2+ transference number and inherent ion-diffusion channel. Importantly, acting as a buffer interphase with strong adhesion and isolation of electrolytes, this functional layer effectively protects the Zn electrode against the water-induced erosion and passivation. Remarkably, the ZPAA@Zn electrode realizes an enhanced Coulombic efficiency of 99.71 % within 2200 cycles, delivers an ultra-long cycling stability over 7660 h (>319 days, 1 mA cm-2) and 2460 h (5 mA cm-2) with lower voltage hysteresis. Also, the ZPAA@Zn/MnO2 full cell maintains a high capacity of 114 mAh/g after 2000 cycles, much better that of untreated Zn/MnO2 cell (25 mAh/g). This concept of in-situ fabricating ion-sieve-like polymer interphase provides a facile approach to stabilize Zn anode and further paves a way for high-performance aqueous batteries.

2.
J Colloid Interface Sci ; 678(Pt A): 627-636, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39216390

RESUMO

Zn anodes suffer from poor reversibility and stability owing to nonuniform dendrite growth and self-corrosion. Here, 1-ethyl-3-methylimidazolium acetate (EMImAc) is introduced to reconstruct interfacial electrical double layer with simultaneously manipulating the solvation environment and the adsorption situation on Zn anode. The acetate anions with high nucleophilicity can effectively alter the solvation shell around Zn2+ ions and immobilize the H2O molecules, thus weakening water activity and alleviating water-related parasitic reactions. Concomitantly, both the imidazolium cation and acetate anion are inclined to gather on Zn anode surface for constructing an electrostatic shielding layer, and meanwhile the chemisorbed acetate anions also contribute to accelerate the Zn(H2O)62+ desolvation process. Such a synergistic effect enables uniform electric field distribution and facilitates Zn ion flux, which mitigates the random diffusion of Zn2+ and finally promotes the dendrite-free deposition. As a result, the Zn/Zn symmetric cells with EMImAc-integrated aqueous electrolyte realize an excellent cycling lifespan of 7000 h (0.5 mA cm-2/0.25 mAh cm-2) and high Zn utilization of 61.3 % (15 mA cm-2/20 mAh cm-2). Furthermore, the effective of EMImAc additive is demonstrated in Zn/V2O5 cells. This work offers insights into the ionic liquid-integrated aqueous electrolytes to enhance the interface stability of Zn anode for rechargeable zinc batteries.

3.
J Colloid Interface Sci ; 677(Pt B): 323-330, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39151225

RESUMO

RuO2 is an efficient electrocatalyst for the oxygen evolution reaction (OER). However, during the OER process, RuO2 is prone to oxidation into Rux+ (x > 4), leading to its dissolution in the electrolyte and resulting in poor stability of RuO2. Here, we report a bicomponent electrocatalyst, NiO and RuO2 co-loaded on carbon nanotubes (RuO2/NiO/CNT). The results demonstrate that the introduction of NiO suppresses the over-oxidation of RuO2 during the OER process, not only inheriting the excellent catalytic performance of RuO2, but also significantly enhancing the stability of the catalyst for OER at high current densities. In contrast to RuO2/CNT, RuO2/NiO/CNT shows no significant change in activity after 150 h of OER at a current density of 100 mA cm-2. Density functional theory (DFT) calculations indicate that NiO transfers a large number of electrons to RuO2, thereby reducing the oxidation state of Ru. In conclusion, this study provides a detailed analysis of the phenomenon where low-valent metal oxides have the ability to enhance the stability of RuO2 catalysts.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124934, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39216369

RESUMO

Two coordination polymers (CPs), [Zn5(L)2(phen)5](1) and [Cd2(HL)(2,2-bpy)(H2O)3](2), were synthesized by using 2',3,3',5,5'-Diphenyl ether pentacarboxylic acid (H5L), phenanthroline (phen), and 2,2'-bipyridine (2,2'-bpy) under hydrothermal conditions. The L5- ligand adopts the µ6-к2: к2: к1: к1: к1: к1 mode in 1 and the µ5-к2: к2: к2: к2: к1 mode in 2. Sensing experiments show that 1 and 2 are fluorescence probes with high sensitivity and rapid detection of nitro explosives, antibiotics, and pesticides. In order to verify the ability of 2 to detect FLU in actual samples, we performed a spiked recovery experiment in green pepper water. The spiked recoveries were 97.77-101.18 %. Interestingly, because H5L is not completely deprotonated in 2, there is abundant hydrogen bonding, which makes the fluorescence quenching rate higher and the detection limit lower. The possible fluorescence quenching mechanism of 1 and 2 can be explained by their UV-VIS absorption spectra and orbital energy levels.

5.
J Colloid Interface Sci ; 678(Pt C): 1192-1202, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39342864

RESUMO

Developing dual-functional electrocatalysts for urea-water decomposition still faces significant challenges. In this study, the vanadium (V) and cerium (Ce) co-doped FeCoNi medium-entropy phosphide (VCe-FeCoNiP/NF) were effectively fabricated on nickel foam (NF) via "two-step method," which involved hydrothermal treatment followed by phosphorization. Experimental results indicate that, benefiting from dual-ion doping and medium-entropy configuration, VCe-FeCoNiP/NF demonstrates unique electronic effects among the multimetallic elements, thereby exhibited remarkable catalytic activity for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Under urea-water conditions (1 M KOH with 0.33 M urea), the VCe-FeCoNi/NF catalyst merely required 1.338 V (vs RHE) and an overpotential of 173 mV to attain a current density of 100 mA·cm-2 for UOR and HER, respectively. Moreover, it could stably operate at a current density of 20 mA·cm-2 for 225 h in overall urea-water decomposition. This work provides new insights for designing high-performance urea-water electrolysis catalysts.

7.
JACS Au ; 4(10): 3759-3765, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39483219

RESUMO

Thiol-mediated uptake (TMU) is thought to occur through dynamic covalent cascade exchange networks. Here we show that the cascade accounting for TMU of asparagusic acid derivatives (AspA) ends in the Golgi apparatus (G) and shifts from disulfide to thioester exchange with palmitoyl transferases as the final exchange partner. As a result, AspA combined with pH-sensitive fluoresceins, red-shifted silicon-rhodamines, or mechanosensitive flipper probes selectively labels the Golgi apparatus in fluorescence microscopy images in living and fixed cells. AspA Golgi trackers work without cellular engineering and excel with speed, simplicity, generality, and compatibility with G/ER and cis/trans discrimination, morphological changes, anterograde vesicular trafficking, and superresolution imaging by stimulated emission depletion microscopy. Golgi flippers in particular can image membrane order and tension in the Golgi and, if desired, at the plasma membrane during TMU.

8.
Oncol Lett ; 28(6): 604, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39483968

RESUMO

Liver cancer is characterized by hypervascularization. Anti-angiogenic agents may normalize the tumor vasculature and improve the efficacy of other treatments. The present study aims to investigate the anti-angiogenic effect of Plasmodium infection in a mouse model of implanted liver cancer cells. HepG2 cells were injected into the left liver lobe of nude mice as a model of in situ hepatic tumorigenesis. Plasmodium yoelii parasitized erythrocytes were administered in the animal model of liver cancer to introduce Plasmodium infection. The tumor growth and microvascular density were determined in the presence or absence of Plasmodium infection. The expression levels of hypoxia-inducible factor 1α (HIF-1α) and angiogenesis-related factors were evaluated using western blotting and reverse transcription-quantitative PCR analysis. The results demonstrated that Plasmodium infection suppressed tumor growth and vascularization in the mouse model of implanted HepG2 cells. Plasmodium parasites reduced the expression of pro-angiogenic factors (vascular endothelial growth factor A and angiopoietin 2), matrix metalloproteinases [(MMP)2 and MMP9] and inflammatory cytokines [tumor necrosis factor α, interleukin 6 (IL)-6) and IL-1ß] in both hepatic and tumor tissues. HIF-1α was downregulated in both hepatic and tumor tissues upon Plasmodium infection, and HIF-1α overexpression rescued angiogenesis and tumor growth under the condition of Plasmodium infection. In conclusion, the results of the present study demonstrated the anti-angiogenic and anti-tumorigenic effects of Plasmodium infection on liver cancer through downregulating HIF-1α expression, indicating that Plasmodium parasites could be developed as an intervention strategy to restrain neo-angiogenesis in liver cancer.

9.
Chem Commun (Camb) ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39445763

RESUMO

CRISPR/Cas systems are increasingly utilized for sensitive miRNA detection through enzyme-based pre-amplification. To address challenges such as high costs, non-specific amplification, and interference from primer residues in pre-amplification strategies, herein a dual amplification CRISPR miRNA assay was developed by combining enzyme-free HCR with single-particle analysis. Attomolar detection limits, excellent selectivity, and practicability were achieved by applying this method.

10.
BMC Gastroenterol ; 24(1): 372, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39427122

RESUMO

BACKGROUND: Hepatic venous pressure gradient (HVPG) is considered the gold standard for diagnosing portal hypertension (PHT). Laparoscopic splenectomy plus esophagogastric devascularization (LSED) is an important surgery for treating PHT. However, the variation trend of HVPG after surgery is not clear. Moreover, whether HVPG can provide precise prognostic information for patients undergoing surgery remains to be further studied. This study aimed to investigate the independent prognostic value of HVPG in LSED. METHODS: From January 2016 to March 2023, 135 patients with PHT underwent LSED at our hospital were retrospectively evaluated. We analyzed the correlations between clinical indicators and history of upper gastrointestinal bleeding (UGIB). Among them, 57 patients remeasured postoperative HVPG. We further investigated the postoperative alterations of HVPG and correlative factors, as well as the relationship between the HVPG and postoperative UGIB. RESULTS: In this study, we found that 94 patients with preoperative UGIB (16.27 ± 5.73 mmHg) had a higher baseline HVPG than the other 41 patients without (14.02 ± 5.90 mmHg) (p = 0.04). The mean postoperative HVPG significantly decreased (-3.57 ± 8.09 mmHg, p = 0.001) compared to the baseline, and 66% of patients (38/57) experienced a decreased HVPG-response after surgery. The baseline HVPG and preoperative CTP class B were associated with the decreased HVPG-response (p<0.05). Additionally, patients with postoperative HVPG decreased>20% from baseline exhibited better recurrent hemorrhage-free survival rates than those without (log-rank, p = 0.013). CONCLUSION: We found that LSED led to a significantly decreased HVPG, and patients with postoperative HVPG decreased >20% obtained better UGIB-free survival benefits than those without.


Assuntos
Hemorragia Gastrointestinal , Hipertensão Portal , Laparoscopia , Pressão na Veia Porta , Esplenectomia , Humanos , Hipertensão Portal/cirurgia , Hipertensão Portal/fisiopatologia , Masculino , Feminino , Esplenectomia/métodos , Laparoscopia/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Prognóstico , Hemorragia Gastrointestinal/cirurgia , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/fisiopatologia , Adulto , Esôfago/cirurgia , Esôfago/fisiopatologia , Estômago/cirurgia , Estômago/irrigação sanguínea , Idoso , Veias Hepáticas/cirurgia , Veias Hepáticas/fisiopatologia
11.
Commun Biol ; 7(1): 1356, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39428444

RESUMO

Elderly individuals display metabolite alterations that may contribute to development of cognitive impairment following surgery and anesthesia. However, these relationships remain largely unexplored. The study aims to assess the S-methyl-5-thioadenosine (MTA) is associated with postoperative delayed neurocognitive recovery (dNCR). We assess altered metabolites following anesthesia/surgery in both mice and patients to identify blood biomarkers of dNCR. Preoperative and postoperative plasma metabolites are determined by widely targeted metabolomics. The brains of mice with anesthesia/surgery show decreased MTA and activated MTA phosphorylase. Mice also show that preoperative administration of MTA can prevent inflammation and cognitive decline. In clinical patients, we detect lower preoperative serum MTA levels in those who developed dNCR. Both low preoperative and postoperative blood MTA levels are associated with increased risk of postoperative dNCR. These results suggest that anesthesia/surgery induces cognitive decline through methionine synthesis pathways and that MTA could be a perioperative predictor of dNCR.


Assuntos
Tionucleosídeos , Animais , Humanos , Masculino , Camundongos , Tionucleosídeos/metabolismo , Tionucleosídeos/farmacologia , Feminino , Idoso , Biomarcadores/sangue , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Disfunção Cognitiva/sangue , Disfunção Cognitiva/etiologia , Complicações Pós-Operatórias/sangue , Complicações Cognitivas Pós-Operatórias/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Desoxiadenosinas
12.
Ther Adv Drug Saf ; 15: 20420986241285929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39429679

RESUMO

Background: As prostaglandin medications, crucial in glaucoma treatment, become more widely used, their local adverse events are increasingly observed. Objectives: To evaluate the common adverse events of four clinically commonly used prostaglandin F (FP) receptor agonists in the treatment of glaucoma in the Food and Drug Administration Adverse Event Reporting System (FAERS) database. Design: We screened and analyzed the generic and brand names of latanoprost, bimatoprost, travoprost, and tafluprost in the FAERS database and summarized and cleaned the baseline information of subjects receiving the above-mentioned drugs. Methods: Perform descriptive statistical analysis on the baseline information of subjects using the drugs. Conduct disproportionality analysis of drug-related adverse events. The criteria for positive signals of adverse events are established by simultaneously meeting the thresholds set by four methods: the ratio of reported odds, proportional reporting ratio, Bayesian confidence propagation neural network, and multi-item gamma Poisson shrinker. Additionally, assess the cumulative risk curves for drug-induced time of the aforementioned drugs and use one-way ANOVA to compare differences in drug-induced time across different groups. Results: The study included 1567 latanoprost, 1517 bimatoprost, 696 travoprost, and 82 tafluprost subjects. Adverse events mainly affected eye disorders, with significant issues in iris hyperpigmentation, ocular pemphigoid, corneal endothelial cell loss, periorbital fat atrophy, corneal irritation, eyelash growth, and ocular hyperemia. The time to onset varied among drugs, with latanoprost showing the longest (mean days = 344.37) and bimatoprost the shortest duration (mean days = 155.65; p < 0.001). Conclusion: Although signal detection analysis based on the FAERS database cannot establish a definitive causal relationship, our study found that FP receptor agonists used in glaucoma can cause various adverse events. Assessing their clinical suitability and potential side effects is crucial for providing personalized treatment and ensuring medication safety.


Understanding side effects of eye drops for glaucoma: a study using the FAERS database Why was the study done? Prostaglandin medications are crucial in treating glaucoma but can cause local adverse events. As the use of these medications increases, it's important to understand their common side effects. The Food and Drug Administration Adverse Event Reporting System (FAERS) is a database that contains adverse event reports, medication error reports and product quality complaints resulting in adverse events that were submitted to the Food and Drug Administration. What did the researchers do? We analyzed the FAERS database to evaluate the common adverse events of four prostaglandin medications commonly used to treat glaucoma: latanoprost, bimatoprost, travoprost, and tafluprost. What did the researchers find? The study included 1567 latanoprost users, 1517 bimatoprost users, 696 travoprost users, and 82 tafluprost users. The main adverse events affected eye disorders, with significant issues including iris hyperpigmentation, ocular pemphigoid, corneal endothelial cell loss, periorbital fat atrophy, corneal irritation, eyelash growth, and ocular hyperemia. The time to onset varied among drugs, with latanoprost showing the longest and bimatoprost the shortest duration. What do the findings mean? Although signal detection analysis from the FAERS database cannot establish a definitive causal relationship, prostaglandin medications used in glaucoma treatment can cause various ocular adverse events during long-term use. Understanding these side effects is crucial for providing personalized treatment and ensuring medication safety.

13.
Int J Ophthalmol ; 17(10): 1929-1948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39430018

RESUMO

One of the most prevalent disorders that cause blindness worldwide is cataract, and its essence is the visual disorder caused by the opacity of the lens. The significant degree of variation in cataracts and the fact that a variety of factors can impact a patient's lens transparency make it especially crucial to investigate the pathogenesis of cataracts at the molecular level. It has been found that more than 60 genes are linked to the formation of cataracts, and the construction of a transgenic mouse model of cataract similar to the selection of human lens clouding due to a variety of causes has become an important means of studying the pathogenesis of cataract. Therefore, the research on the application of transgenic mice to the molecular pathogenesis of cataracts will be the main topic of this review of the literature.

14.
J Orthop Translat ; 49: 49-61, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39430132

RESUMO

Tendinopathy is a prevalent aging-related disorder characterized by pain, swelling, and impaired function, often resulting from micro-scarring and degeneration caused by overuse or trauma. Current interventions for tendinopathy have limited efficacy, highlighting the need for innovative therapies. Mitochondria play an underappreciated and yet crucial role in tenocytes function, including energy production, redox homeostasis, autophagy, and calcium regulation. Abnormalities in mitochondrial function may lead to cellular senescence. Within this context, this review provides an overview of the physiological functions of mitochondria in tendons and presents current insights into mitochondrial dysfunction in tendinopathy. It also proposes potential therapeutic strategies that focus on targeting mitochondrial health in tenocytes. These strategies include: (1) utilizing reactive oxygen species (ROS) scavengers to mitigate the detrimental effects of aberrant mitochondria, (2) employing mitochondria-protecting agents to reduce the production of dysfunctional mitochondria, and (3) supplementing with exogenous normal mitochondria. In conclusion, mitochondria-targeted therapies hold great promise for restoring mitochondrial function and improving outcomes in patients with tendinopathy. The translational potential of this article: Tendinopathy is challenging to treat effectively due to its poorly understood pathogenesis. This review thoroughly analyzes the role of mitochondria in tenocytes and proposes potential strategies for the mitochondrial treatment of tendinopathy. These findings establish a theoretical basis for future research and the clinical translation of mitochondrial therapy for tendinopathy.

15.
Biomed Pharmacother ; 180: 117526, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378682

RESUMO

OBJECTIVES: The purposes of this study were to (i) verify the role of CXCR2 in tacrolimus-induced nephrotoxicity, (ii) explore the specific mechanism of CXCR2-mediated tacrolimus nephrotoxicity, and (iii) target the antagonism of CXCR2 and provide a potential target for the treatment of tacrolimus-induced nephrotoxicity in children. METHODS: CXCR2 knockout (CXCR2-KO) mice were used to evaluate the role of CXCR2 in tacrolimus-induced nephrotoxicity. Wistar rats were used to explore the underlying mechanism. RESULTS: In the knockout mice, compared with N-WT group, the renal function index was deteriorative (P < 0.01), the degree of renal fibrosis was aggravated (P < 0.01), the pathological expression of E-cadherin (P < 0.01) and α-SMA (P < 0.01) were occurred in T-WT group. Inversely, compared with T-WT group, the above indicators were improved in T-KO group (P < 0.01). In wistar rats, compared with N group, the renal function index was deteriorative (P < 0.05 or P < 0.01), fibrosis and calcium overload occurred (P < 0.01), CXCL2-CXCR2 was activated (P < 0.05), and meanwhile PI3K/AKT/mTOR pathway was activated (P < 0.05 or P < 0.01) in T group. Inversely, compared with T group, the above indicators were reversed in C group (P < 0.05 or P < 0.01). CONCLUSION: The present study was firstly to report that CXCL2-CXCR2 activated PI3K/AKT/mTOR pathway and calcium overload in tacrolimus-induced nephrotoxicity, and targeting CXCR2 could inhibit the progression of tacrolimus-induced nephrotoxicity.

16.
J Sci Food Agric ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390660

RESUMO

BACKGROUND: Sea buckthorn (Hippophae rhamnoides L.) pulp oil is rich in functional components; however, low water solubility and stability limit its applications. This study fabricated sea buckthorn pulp oil microcapsules using whey protein isolate (WPI), soy protein isolate (SPI), sodium caseinate (NaCN), gum arabic (GA), starch sodium octenylsuccinate (OSAS) and SPI mixed with chitosan (CHI). The influences of these wall materials on physicochemical properties, release behavior and digestibility were explored. RESULTS: Protein-based wall materials (WPI, NaCN, SPI) demonstrated lower bulk densities due to their porous structures and larger particle sizes, while GA and OSAS produced denser microcapsules. Encapsulation efficiency was the highest for protein-based microcapsules (79.41-89.12%) and the lowest for GA and OSAS. The surface oil percentage of protein-based microcapsules (1.41-4.40%) was lower than that of the other microcapsules. Protein-based microcapsules showed concave and cracked surfaces, while GA and OSAS microcapsules were spherical and smooth. CHI improved reconstitution performance, leading to faster dissolution. During simulated gastrointestinal digestion, protein-based microcapsules released more free fatty acids (FFAs) in the intestinal phase, while CHI-modified SPI microcapsules showed a delayed release pattern due to thicker walls. CONCLUSION: Protein-based wall materials were more effective for sea buckthorn pulp oil microencapsulation, providing higher encapsulation efficiency, better flow properties and releasing more FFAs. The addition of CHI led to the layer-by-layer self-assembly of the microcapsule wall and resulted in sustained release during in vitro intestinal digestion. These findings suggested the potential of protein-based microcapsules for targeted delivery and improved applications of bioactive oils in the food industry. © 2024 Society of Chemical Industry. Published by John Wiley & Sons Ltd.

17.
JAMA Oncol ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388190

RESUMO

Importance: Accurate staging is a fundamental step in treating patients with nasopharyngeal carcinoma (NPC) worldwide; this is crucial not only for prognostication, but also for guiding treatment decisions. The American Joint Committee on Cancer (AJCC)/Union for International Cancer Control (UICC) tumor-node-metastasis (TNM) system is the global language for clinicians, researchers, and cancer registries. Continual improvement that aligns with contemporary pattern of care is essential. Objective: To improve the prognostic accuracy and clinical applicability of the eighth edition (TNM-8) for NPC. Design, Setting, and Participants: This multicenter study analyzed patients with NPC with detailed tumor features during January 2014 and December 2015 and was reviewed by experienced radiologists. The data analysis was completed in December 2023. The findings were further confirmed with internal and external validation. Statistical analyses and clinical considerations were reviewed by the AJCC/UICC multidisciplinary head and neck panels and attained consensus. The recommendations were evaluated by the AJCC Evidence-Based Medicine Committee before final endorsement as the ninth version (TNM-9). Main Outcomes and Measures: The primary end point was overall survival. Adjusted hazard ratios of different subgroups were then assessed for confirmation of optimal stage grouping. Results: Of the 4914 patients analyzed, 1264 (25.7%) were female and 3650 (74.3%) were male; the median (SD) age was 48.1 (12.0) years. Advanced radiological extranodal extension (with involvement of adjacent muscles, skin, and/or neurovascular bundles) was identified as an independent adverse factor for all end points: this was added as a criterion for N3. Patients with nonmetastatic disease were regrouped into stages I to III instead of TNM-8 stages I to IVA. Significant hazard discrimination was achieved by grouping T1-2N0-1 as stage I, T3/N2 as stage II, and T4/N3 as stage III. Although the T1-2N0-1 subgroups had comparable 5-year overall survival, subdivisions into IA (T1-T2N0) and IB (T1-T2N1) were recommended due to the distinction in adjusted hazard ratios following adjustment for chemotherapy use. Metastatic disease was exclusively classified as stage IV, and prognostication was further refined by subdivision into IVA (M1a, ≤3 lesions) and IVB (M1b, >3 lesions). TNM-9 demonstrated superiority compared with TNM-8 in major statistical aspects. Conclusion and Relevance: The results of this diagnostic study suggest that the ninth version of TNM staging for NPC, based on robust analyses and a comprehensive review by the AJCC/UICC staging committees, provides an improved staging system for global application and a framework for future incorporation of nonanatomical factors. This will be launched for global application in January 2025.

18.
Chem Commun (Camb) ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39399970

RESUMO

Selective deprotonation of the amidinate ligand in lutetium dinitrogen complex [{Cp*{MeC(NiPr)2}Lu}2(µ2-η2:η2-N2)][K(crypt)] (Cp* = (C5Me5)-, crypt = 2,2,2-cryptand) afforded the novel Cp*/enolamido lutetium dinitrogen complex [{Cp*{H2CC(NiPr)2}Lu}2(µ2-η2:η2-N2)K][K(crypt)]. Due to the skeleton tension, a further rearrangement was confirmed with the formation of [{Cp*K{H2CC(NiPr)2}Cp*Lu}2(µ2-η2:η2-N2)][K(crypt)]2.

19.
Phys Rev Lett ; 133(13): 133802, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39392982

RESUMO

Disorder, which is ubiquitous in nature, has been extensively explored in photonics for understanding the fundamental principles of light diffusion and localization, as well as for applications in functional resonators and random lasers. Recently, the investigation of disorder in topological photonics has led to the realization of topological Anderson insulators characterized by an unexpected disorder-induced phase transition. However, the observed photonic topological Anderson insulators so far are limited to the time-reversal symmetry breaking systems. Here, we propose and realize a photonic quantum spin Hall topological Anderson insulator without breaking time-reversal symmetry. The disorder-induced topological phase transition is comprehensively confirmed through the theoretical effective Dirac Hamiltonian, numerical analysis of bulk transmission, and experimental examination of bulk and edge transmissions. We present convincing evidence for the unidirectional propagation and robust transport of helical edge modes, which are the key features of nontrivial time-reversal invariant topological Anderson insulators. Furthermore, we demonstrate disorder-induced beam steering, highlighting the potential of disorder as a new degree of freedom to manipulate light propagation in magnetic-free systems. Our work not only paves the way for observing unique topological photonic phases but also suggests potential device applications through the utilization of disorder.

20.
Nat Plants ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394506

RESUMO

Sporopollenin, a critical innovation in the evolution of terrestrial plants, is the core building brick for the outer wall of land-plant spores and pollen. Despite its significance, the basic structure of sporopollenin remains elusive due to its extreme chemical inertness. In this study, we used ethanolamine to completely dissolve rape sporopollenin and successfully identified a total of 22 components, including fatty acids, p-coumaric acid, sterols and polymeric phenylpropanoid derivatives. After that, using NaOH treatment and partial dissolution, alongside Arabidopsis mutants analysis and spectroscopic methods, we determined that polymeric phenylpropanoid derivatives crosslinked by hydroxyl fatty acids serve as the core structure of sporopollenin. The free hydroxyl groups and carboxyl groups of the polymeric phenylpropanoid derivatives can be modified by other fatty acids (C16:0, C18:0 and C18:3) as well as alcohols/phenols (for example, naringenin, ß-sitosterol), resulting in a structure that protects pollen from terrestrial stresses. This discovery provides a basis for further exploration of sporopollenin's role in plant reproduction and evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA