Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 474: 134776, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852255

RESUMO

Phthalate esters (PAEs) are widely used as plasticizers and cause serious complex pollution problem in environment. Thus, strains with efficient ability to simultaneously degrade various PAEs are required. In this study, a newly isolated strain Rhodococcus sp. AH-ZY2 can degrade 500 mg/L Di-n-octyl phthalate completely within 16 h and other 500 mg/L PAEs almost completely within 48 h at 37 °C, 180 rpm, and 2 % (v/v) inoculum size of cultures with a OD600 of 0.8. OD600 = 0.8, 2 % (v/v). Twenty genes in its genome were annotated as potential esterase and four of them (3963, 4547, 5294 and 5359) were heterogeneously expressed and characterized. Esterase 3963 and 4547 is a type I PAEs esterase that hydrolyzes PAEs to phthalate monoesters. Esterase 5294 is a type II PAEs esterase that hydrolyzes phthalate monoesters to phthalate acid (PA). Esterase 5359 is a type III PAEs esterase that simultaneously degrades various PAEs to PA. Molecular docking results of 5359 suggested that the size and indiscriminate binding feature of spacious substrate binding pocket may contribute to its substrate versatility. AH-ZY2 is a potential strain for efficient remediation of PAEs complex pollution in environment. It is first to report an esterase that can efficiently degrade mixed various PAEs.


Assuntos
Biodegradação Ambiental , Esterases , Ésteres , Simulação de Acoplamento Molecular , Ácidos Ftálicos , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/genética , Rhodococcus/enzimologia , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Esterases/metabolismo , Esterases/genética , Ésteres/metabolismo , Ésteres/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Plastificantes/metabolismo
2.
J Am Chem Soc ; 146(21): 14864-14874, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38754389

RESUMO

The exploitation of carbon dioxide (CO2) as a sustainable, plentiful, and harmless C1 source for the catalytic synthesis of enantioenriched carboxylic acids has long been acknowledged as a pivotal task in synthetic chemistry. Herein, we present a current-driven nickel-catalyzed reductive carboxylation reaction with CO2 fixation, facilitating the formation of C(sp3)-C(sp2) bonds by circumventing the handling of moisture-sensitive organometallic reagents. This electroreductive protocol serves as a practical platform, paving the way for the synthesis of enantioenriched propargylic carboxylic acids (up to 98% enantiomeric excess) from racemic propargylic carbonates and CO2. The efficacy of this transformation is exemplified by its successful utilization in the asymmetric total synthesis of (S)-arundic acid, (R)-PIA, (S)-chizhine D, (S)-cochlearin G, and (S,S)-alexidine, thereby underscoring the potential of asymmetric electrosynthesis to achieve complex molecular architectures sustainably.

3.
Angew Chem Int Ed Engl ; 63(22): e202403401, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38527960

RESUMO

Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.

4.
J Am Chem Soc ; 146(5): 2919-2927, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277794

RESUMO

Dicarboxylic acids and derivatives are important building blocks in organic synthesis, biochemistry, and the polymer industry. Although catalytic dicarboxylation with CO2 represents a straightforward and sustainable route to dicarboxylic acids, it is still highly challenging and limited to generation of achiral or racemic dicarboxylic acids. To date, catalytic asymmetric dicarboxylation with CO2 to give chiral dicarboxylic acids has not been reported. Herein, we report the first asymmetric dicarboxylation of 1,3-dienes with CO2 via Cu catalysis. This strategy provides an efficient and environmentally benign route to chiral dicarboxylic acids with high regio-, chemo-, and enantioselectivities. The copper self-relay catalysis, that is, Cu-catalyzed boracarboxylation of 1,3-dienes to give carboxylated allyl boronic ester intermediates and subsequent carboxylation of C-B bonds to give dicarboxylates, is key to the success of this dicarboxylation. Moreover, this protocol exhibits broad substrate scope, good functional group tolerance, easy product derivatizations, and facile synthesis of chiral liquid crystalline polyester and drug-like scaffolds.

5.
Heliyon ; 10(1): e22766, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163107

RESUMO

A transient ischemic attack (TIA) affects millions of people worldwide. Although TIA risk factors have been identified individually, a systemic quantitative analysis of all health factors relevant to TIA using electronic medical records (EMR) remains lacking. This study employed a data-driven approach, leveraging hospital EMR data to create a TIA patient health factor graph. This graph consisted of 737 TIA and 737 control patient nodes, 740 health factor nodes, and over 33,000 relations between patients and factors. For all health factors in the graph, the connection delta ratios (CDRs) were determined and ranked, generating a quantitative distribution of TIA health factors. A literature review confirmed 56 risk factors in the distribution and unveiled a potential new risk factor "rhinosinusitis" for future validation. Moreover, the patient graph was visualized together with the TIA knowledge graph in the Unified Medical Language System. This integration enables clinicians to access and visualize patient data and international standard knowledge within a unified graph. In conclusion, graph CDR analysis can effectively quantify the distribution of TIA risk factors. The resulting TIA risk factor distribution might be instrumental in developing new risk prediction machine learning models for screening and early detection of TIA.

7.
Angew Chem Int Ed Engl ; 60(25): 14068-14075, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33793030

RESUMO

Reductive carboxylation of organo (pseudo)halides with CO2 is a powerful method to provide carboxylic acids quickly. Notably, the catalytic reductive carbo-carboxylation of unsaturated hydrocarbons via CO2 fixation is a highly challenging but desirable approach for structurally diverse carboxylic acids. There are only a few reports and no examples of alkenes via transition metal catalysis. We report the first asymmetric reductive carbo-carboxylation of alkenes with CO2 via nickel catalysis. A variety of aryl (pseudo)halides, such as aryl bromides, aryl triflates and inert aryl chlorides of particular note, undergo the reaction smoothly to give important oxindole-3-acetic acid derivatives bearing a C3-quaternary stereocenter. This transformation features mild reaction conditions, wide substrate scope, facile scalability, good to excellent chemo-, regio- and enantioselectivities. The method highlights the formal synthesis of (-)-Esermethole, (-)-Physostigmine and (-)-Physovenine, and the total synthesis of (-)-Debromoflustramide B, (-)-Debromoflustramine B and (+)-Coixspirolactam A; thereby, opening an avenue for the total synthesis of chiral natural products with CO2 .

8.
J Am Chem Soc ; 141(47): 18825-18835, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31703165

RESUMO

The catalytic asymmetric functionalization of readily available 1,3-dienes is highly important, but current examples are mostly limited to the construction of tertiary chiral centers. The asymmetric generation of acyclic products containing all-carbon quaternary stereocenters from substituted 1,3-dienes represents a more challenging, but highly desirable, synthetic process for which there are very few examples. Herein, we report the highly selective copper-catalyzed generation of chiral all-carbon acyclic quaternary stereocenters via functionalization of 1,3-dienes with CO2. A variety of readily available 1,1-disubstituted 1,3-dienes, as well as a 1,3,5-triene, undergo reductive hydroxymethylation with high chemo-, regio-, E/Z-, and enantioselectivities. The reported method features good functional group tolerance, is readily scaled up to at least 5 mmol of starting diene, and generates chiral products that are useful building blocks for further derivatization. Systemic mechanistic investigations using density functional theory calculations were performed and provided the first theoretical investigation for an asymmetric transformation involving CO2. These computational results indicate that the 1,2-hydrocupration of 1,3-diene proceeds with high π-facial selectivity to generate an (S)-allylcopper intermediate, which further induces the chirality of the quaternary carbon center in the final product. The 1,4-addition of an internal allylcopper complex, which differs from previous reports involving terminal allylmetallic intermediates, to CO2 kinetically determines the E/Z- and regioselectivity. The rapid reduction of a copper carboxylate intermediate to the corresponding silyl-ether in the presence of Me(MeO)2SiH provides the exergonic impetus and leads to chemoselective hydroxymethylation rather than carboxylation. These results provide new insights for guiding further development of asymmetric C-C bond formations with CO2.

9.
Nat Commun ; 10(1): 2716, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221978

RESUMO

Catalytic asymmetric cycloadditions via transition-metal-containing dipolar intermediates are a powerful tool for synthesizing chiral heterocycles. However, within the field of palladium catalysis, compared with the well-developed normal electron-demand cycloadditions with electrophilic dipolarophiles, a general strategy for inverse electron-demand ones with nucleophilic dipolarophiles remains elusive, due to the inherent linear selectivity in the key palladium-catalyzed intermolecular allylations. Herein, based on the switched regioselectivity of iridium-catalyzed allylations, we achieved two asymmetric [4+2] cycloadditions of vinyl aminoalcohols with aldehydes and ß,γ-unsaturated ketones through synergetic iridium and amine catalysis. The activation of vinyl aminoalcohols by iridium catalysts and carbonyls by amine catalysts provide a foundation for the subsequent asymmetric [4+2] cycloadditions of the resulting iridium-containing 1,4-dipoles and (di)enamine dipolarophiles. The former provides a straightforward route to a diverse set of enantio-enriched hydroquinolines bearing chiral quaternary stereocenters, and the later represent an enantio- and diastereodivergent synthesis of chiral hydroquinolines.

10.
J Am Chem Soc ; 139(47): 17011-17014, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29125759

RESUMO

Herein, we report a highly regio- and enantioselective copper-catalyzed reductive hydroxymethylation of styrenes and 1,3-dienes with 1 atm of CO2. Diverse important chiral homobenzylic alcohols were readily prepared from styrenes. Moreover, a variety of 1,3-dienes also were converted to chiral homoallylic alcohols with high yields and excellent regio-, enantio-, and Z/E-selectivities. The utility of this transformation was demonstrated by a broad range of styrenes and 1,3-dienes, facile product modification, and synthesis of bioactive compounds (R)-(-)-curcumene and (S)-(+)-ibuprofen. Mechanistic studies demonstrated the carboxylation of phenylethylcopper complexes with CO2 as one key step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA