RESUMO
VO2 affords ultrafast polysulfide adsorption on account of its oxidation potential, which matches the sulfur working window (1.7-2.8 V). Nevertheless, its nonconductive surface limits direct sulfur conversion. Herein, we gently load carbon quantum dots on VO2 to increase direct Li2S nucleation by enhanced electron conductivity. As a result, the soft-packaged lithium-sulfur pouch cell yields a capacity retention of 88.8% at 0.5C after 100 cycles and a decay rate of 0.17% per cycle over 200 cycles at 2C. The cell energy density of the multilayer cell is up to 386.1 W h kg-1.
RESUMO
A multisite interface passivation material named 2-mercapto-4-methyl-5-thiazoleacetic acid (MMTA) is used to optimize the perovskite film top interface. DFT calculations and experiments show that MMTA can effectively passivate interface defects. Finally, the champion device's photoelectric conversion efficiency reached 23.44%, which possessed long-term stability.
RESUMO
The development of biomimetic structures with integrated extracellular matrix (ECM) components represents a promising approach to biomaterial fabrication. Here, an artificial ECM, comprising the structural protein collagen I and elastin (ELN), as well as the glycosaminoglycan hyaluronan (HA), is reported. Specifically, collagen and ELN are electrochemically aligned to mimic the compositional characteristics of the dermal matrix. HA is incorporated into the electro-compacted collagen-ELN matrices via adsorption and chemical immobilization, to give a final composition of collagen/ELN/HA of 7:2:1. This produces a final collagen/ELN/hyaluronic acid scaffold (CEH) that recapitulates the compositional feature of the native skin ECM. This study analyzes the effect of CEH composition on the cultivation of human dermal fibroblast cells (HDFs) and immortalized human keratinocytes (HaCaTs). It is shown that the CEH scaffold supports dermal regeneration by promoting HDFs proliferation, ECM deposition, and differentiation into myofibroblasts. The CEH scaffolds are also shown to support epidermis growth by supporting HaCaTs proliferation, differentiation, and stratification. A double-layered epidermal-dermal structure is constructed on the CEH scaffold, further demonstrating its ability in supporting skin cell function and skin regeneration.
Assuntos
Ácido Hialurônico , Pele , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Pele/metabolismo , Matriz Extracelular/química , Colágeno/química , Elastina/farmacologia , FibroblastosRESUMO
In this paper, we designed a three-band narrowband perfect absorber based on bulk Dirac semi-metallic (BDS) metamaterials. The absorber consists of a hollow Dirac semi-metallic layer above, a gold layer below and a photonic crystal slab (PCS) in the middle. The study found that the terahertz wave absorber achieved three perfect absorption rates of more than 95% in the range of 1 to 2.4 THz. The minimum bandwidth (FWHM) is 0.02 THz, and the maximum quality factor (Q) is 106. A reasonable explanation of high absorption can be obtained by impedance matching, electric dipole and other principles. The absorption spectra of the two polarizations show different responses at different incident angles. In addition, we also obtained the influence of the structural parameters of the upper layer of the metamaterial on the absorption performance. We defined the refractive index sensitivity (S) with a maximum sensitivity of 0.1525 THz RIU-1 and a highest quality factor (FOM) of 4.26 in the refractive index range of 1 to 1.8. The maximum adjustable range is 0.06 THz in the Fermi energy range of 60 to 140 meV. Because of its excellent characteristics, our absorber will have good development prospects in the fields of optical switching, biochemical imaging, and space detection.
RESUMO
3D bioprinting has been increasingly employed in skin tissue engineering for manufacturing living constructs with three-dimensional spatial precision and controlled architecture. There is however, a bottleneck in the tunability of bioinks to address specific biocompatibility challenges, functional traits and printability. Here we report on a traditional gelatin methacryloyl (GelMA) based bioink, tuned by addition of an ulvan type polysaccharide, isolated from a cultivated source of a specific Australian Ulvacean macroalgae (Ul84). Ul84 is a sulfate- and rhamnose-rich polysaccharide, resembling mammalian glycosaminoglycans that are involved in wound healing and tissue matrix structure and function. Printable bioinks were developed by addition of methacrylated Ul84 (UlMA) to GelMA solutions. The inclusion of UlMA in the bioinks facilitated the extrusion printing process by reducing yield stress. The resultant printed structures containing ulvan exhibited improved mechanical strength and regulated the rate of scaffold degradation. The 3D printed cell-laden structures with human dermal fibroblasts demonstrated high cell viability, support of cell proliferation and dermal-like properties as evidenced by the deposition of key dermal extracellular matrix components including collagen I, collagen III, elastin and fibronectin. In vitro degradation suggested the role of UlMA in supporting structural stability of the printed cellular structures. Taken together, the present work demonstrates progression towards a biocompatible and biofunctional ink that simultaneously delivers improved mechanical, structural and stability traits that are important in facilitating real world applications in skin tissue repair.
Assuntos
Bioimpressão , Animais , Austrália , Humanos , Polissacarídeos , Impressão Tridimensional , Engenharia Tecidual , Alicerces TeciduaisRESUMO
Nowadays, solar energy is considered one of the most clean energy sources. In addition, the data from the literature tell us that its main radiation bandwidth is approximately 295-2500 nm. In this work, we proposed a novel kind of broadband solar energy absorber based on tungsten (W) to achieve broadband absorption of solar energy. A four-layer ring-disk structure (SiO2-SiO2-W) is employed in our design. A finite-difference time-domain (FDTD) simulation was used to ascertain the absorption performance of the absorber. The results demonstrate that a broadband solar energy absorption was realized, the bandwidth is of 1530 nm with an absorption efficiency of more than 90%, and an absorption efficiency of 97% was achieved in this region. The absorption spectra can be tuned through changing the structural and geometric parameters. Moreover, the absorber has excellent polarization independence and can be used under incident angles from 0° to 60°. The proposed solar energy absorber is simple to fabricate, and can be used for photothermal conversion, solar energy harvesting and utilization.
RESUMO
A ZnO seed layer was formed on the fluorine-doped tin oxide substrate by magnetron sputtering, and then a ZnO nanorod was grown on the ZnO seed layer by a hydrothermal method. Next, we prepared a single-crystal Ag seed layer by magnetron sputtering to form a ZnO@Ag composite heterostructure. Finally, Ag3PO4 crystals were grown on the Ag seed layer by a stepwise deposition method to obtain a ZnO@Ag@Ag3PO4 ternary heterojunction. The composite heterostructure of the material has super strong hydrophilicity and can be combined with water-soluble pollutants very well. Besides, it has excellent anti-reflection performance, which can absorb light from all angles. When Ag exists in the heterojunction, it can effectively improve the separation of photo-generated electrons and holes, and improve the photoelectric conversion performance. Based on the above characteristics, this nano-heterostructure can be used in the fields of solar cells, sensors, light-emitting devices, and photocatalysis.
RESUMO
In this paper, ZnO@MoS2 core-shell heterojunction arrays were successfully prepared by the two-step hydrothermal method, and the growth mechanism was systematically studied. We found that the growth process of molybdenum disulfide (MoS2) was sensitively dependent on the reaction temperature and time. Through an X-ray diffractometry (XRD) component test, we determined that we prepared a 2H phase MoS2 with a direct bandgap semiconductor of 1.2 eV. Then, the photoelectric properties of the samples were studied on the electrochemical workstation. The results show that the ZnO@MoS2 heterojunction acts as a photoanode, and the photocurrent reaches 2.566 mA under the conditions of 1000 W/m2 sunshine and 0.6 V bias. The i-t curve also illustrates the perfect cycle stability. Under the condition of illumination and external bias, the electrons flow to the conduction band of MoS2 and flow out through the external electrode of MoS2. The holes migrate from the MoS2 to the zinc oxide (ZnO) valence band. It is transferred to the external circuit through the glass with fluorine-doped tin oxide (FTO) together with the holes on the ZnO valence band. The ZnO@MoS2 nanocomposite heterostructure provides a reference for the development of ultra-high-speed photoelectric switching devices, photodetector(PD) devices, and photoelectrocatalytic technologies.
RESUMO
In order to significantly enhance the absorption capability of solar energy absorbers in the visible wavelength region, a novel monolayer molybdenum disulfide (MoS2)-based nanostructure was proposed. Local surface plasmon resonances (LSPRs) supported by Au nanocubes (NCs) can improve the absorption of monolayer MoS2. A theoretical simulation by a finite-difference time-domain method (FDTD) shows that the absorptions of proposed MoS2-based absorbers are above 94.0% and 99.7% at the resonant wavelengths of 422 and 545 nm, respectively. In addition, the optical properties of the proposed nanostructure can be tuned by the geometric parameters of the periodic Au nanocubes array, distributed Bragg mirror (DBR) and polarization angle of the incident light, which are of great pragmatic significance for improving the absorption efficiency and selectivity of monolayer MoS2. The absorber is also able to withstand a wide range of incident angles, showing polarization-independence. Similar design ideas can also be implemented to other transition-metal dichalcogenides (TMDCs) to strengthen the interaction between light and MoS2. This nanostructure is relatively simple to implement and has a potentially important application value in the development of high-efficiency solar energy absorbers and other optoelectronic devices.
RESUMO
In this article, we present a design for a triple-band tunable metamaterial absorber with an Au nano-cuboids array, and undertake numerical research about its optical properties and local electromagnetic field enhancement. The proposed structure is investigated by the finite-difference time domain (FDTD) method, and we find that it has triple-band tunable perfect absorption peaks in the near infrared band (1000-2500 nm). We investigate some of structure parameters that influence the fields of surface plasmons (SP) resonances of the nano array structure. By adjusting the relevant structural parameters, we can accomplish the regulation of the surface plasmons resonance (SPR) peaks. In addition, the triple-band resonant wavelength of the absorber has good operational angle-polarization-tolerance. We believe that the excellent properties of our designed absorber have promising applications in plasma-enhanced photovoltaic, optical absorption switching and infrared modulator optical communication.
RESUMO
By means of critical coupling and impedance matching theory, we have numerically simulated the perfect absorption of monolayer graphene. Through the critical coupling effect and impedance matching, we studied a perfect single-band absorption of the monolayer graphene and obtained high quality factor (Q-factor = 664.2) absorption spectrum which has an absorbance close to 100% in the near infrared region. The position of the absorption spectrum can be adjusted by changing the ratio between the radii of the elliptic cylinder air hole and the structural period. The sensitivity of the absorber can be achieved S = 342.7 nm/RIU (RIU is the per refractive index unit) and FOM = 199.2 (FOM is the figure of merit), which has great potential for development on biosensors. We believe that our research will have good application prospects in graphene photonic devices and optoelectronic devices.
RESUMO
In this study, we combine the methods of magnetron sputtering, hydrothermal growth, and stepwise deposition to prepare novel ZnO@Ag3PO4 core-shell nanocomposite arrays structure. Through scanning electron microscope (SEM) topography test, energy dispersive spectrometer (EDS) element test and X-ray diffractometry (XRD) component test, we characterize the morphology, element distribution and structural characteristics of ZnO@Ag3PO4 core-shell nanocomposite arrays structure. At the same time, we test the samples for light reflectance, hydrophilicity and photoelectric performance. We find that after deposition of Ag3PO4 on ZnO nanorods, light reflectance decreases. As the time of depositions increases, light reflectance gradually decreases. After the deposition of Ag3PO4, the surface of the sample shows super hydrophilicity, which is beneficial for the photoelectric performance test. Through the optical transient response test, we find that the photo-generated current reaches a maximum when a small amount of Ag3PO4 is deposited. As the time of depositions of Ag3PO4 increases, the photogenerated current gradually decreases. Finally, we conducted an alternating current (AC) impedance test and also verified the correctness of the photocurrent test. Therefore, the structure is expected to be prepared into a photoanode for use in fields such as solar cells.
RESUMO
We demonstrate a dual-band plasmonic perfect absorber (PA) based on graphene metamaterials. Two absorption peaks (22.5 µm and 74.5 µm) with the maximal absorption of 99.4% and 99.9% have been achieved, respectively. We utilize this perfect absorber as a plasmonic sensor for refractive index (RI) sensing. It has the figure of merit (FOM) of 10.8 and 3.2, and sensitivities of about 5.6 and 17.2 µm/RIU, respectively. Hence, the designed dual-band PA-based RI sensor exhibits good sensing performance in the infrared regime, which offers great potential applications in various biomedical, tunable spectral detecting, environmental monitoring and medical diagnostics.
RESUMO
An array of biological properties is demonstrated in the category of extracts broadly known as ulvans, including antibacterial, anti-inflammatory and anti-coagulant activities. However, the development of this category in biomedical applications is limited due to high structural variability across species and a lack of consistent and scalable sources. In addition, the modification and formulation of these molecules is still in its infancy with regard to progressing to product development. Here, a sulfated and rhamnose-rich, xylorhamno-uronic acid (XRU) extract from the cell wall of a controlled source of cultivated Australian ulvacean macroalgae resembles mammalian connective glycosaminoglycans. It is therefore a strong candidate for applications in wound healing and tissue regeneration. This study targets the development of polysaccharide modification for fabrication of 3D scaffolds for skin cell (fibroblast) culture. The XRU extract is methacrylated and UV-crosslinked to produce hydrogels with tuneable mechanical properties. The hydrogels demonstrate high cell viability and support cell proliferation over 14 days, which are far more functional than comparable alginate gels. Importantly, an XRU-based bioink is developed for extrusion printing 3D constructs both with and without cell encapsulation. These results highlight the close to product potential of this rhamnose-rich XRU extract as a promising biomaterial toward wound healing. Future studies should be focused on in-depth in vitro characterizations to examine the role of the material in dermal extracellular matrix (ECM) secretion of 3D printed structures, and in vivo characterizations to assess its capacity in supporting wound healing.
Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Hidrogéis/química , Ramnose/química , Sulfatos/química , Ácidos Urônicos/química , Cicatrização/efeitos dos fármacos , Fenômenos Químicos , Humanos , Impressão , Pele/citologia , Água/químicaAssuntos
Adenocarcinoma de Pulmão/diagnóstico , Neoplasias Pulmonares/diagnóstico , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Estudos RetrospectivosRESUMO
ZnO nanorods have been grown on the surface of foamed nickel by a two-step method. Firstly, a layer of ZnO seed is sputtered on the surface of the foamed nickel by magnetron sputtering, and then the hydrothermal method is used to grow ZnO nanorods at different conditions (solution concentration, reaction time and reaction temperature). The results show that the morphology of ZnO nanorods is closely related to the solution concentration, reaction time, and reaction temperature. The energy band structure formed by the foamed nickel and ZnO seed layers and the growth mechanism of ZnO nanorods are discussed. The samples are characterized by Energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and Raman spectroscopy. The absorption characteristics of samples to light are characterized by ultraviolet-to-visible (UVâ»VIS) absorption. The hydrophilicity of the samples is characterized by the static contact angle. By analyzing the performance characteristics of the samples at different conditions, we finally obtained the optimal growth parameters. At the optimal parameters, the morphology of the grown nanorods is regular, the ultraviolet band has strong absorption, and the surface of the samples forms a superhydrophobic surface.
RESUMO
The optical performance of a periodically tunable plasma perfect metamaterial absorber based on a square-square-circle array we propose in the terahertz region is analyzed in this work by the finite difference time domain (FDTD) method. We not only discuss the impact of various parameters such as period a, length L, radius R, and incident angle θ under transverse magnetic (TM)- and transverse electric (TE)-polarization on the absorption spectra of the absorber but also study the effect of the Fermi energy EF and relaxation time τ. Finally, we simulate the spectra as the surrounding refractive index n changes to better evaluate the sensing performance of the structure, producing a sensitivity S of the structure of up to 15006 nm/RIU. On account of this research, we find that the absorber is beneficial to sensors and detectors in the terahertz region.
RESUMO
BACKGROUND: This study investigated the functions of FAM46B in non-small cell lung cancer (NSCLC) cells and determined the role of ß-catenin/matrix metalloproteinase 7 (MMP7) signaling in mediating these functions. METHODS: Human paracancerous and cancer tissues were collected from lung cancer patients. Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay while migration and invasion were examined by transwell chamber assays. Relative mRNA expression and protein levels were determined by quantitative reverse transcription (q-RT) polymerase chain reaction (PCR) and western blot, respectively. RESULTS: FAM46B displayed reduced expression in lung cancer tissues compared with paired paracancerous tissues. In contrast, ß-catenin protein levels were elevated in lung cancer tissues compared with paired paracancerous tissues. FAM46B over-expression reduced proliferation, migration and invasion of A549 and H292 cells, as well as decreased the protein levels of ß-catenin, MMP7 and vascular endothelial growth factor (VEGF). On the other hand, FAM46B knockdown by shRNA in H1975 cells enhanced proliferation, migration and invasion, as well as increased the protein levels of ß-catenin and MMP7. These enhanced effects were ameliorated by treatment with the Wnt/ß-catenin inhibitor XAV939, suggesting a role for Wnt signaling in mediating the functions of FAM46B in NSCLC. CONCLUSIONS: FAM46B functions as a tumor suppressor by inhibiting ß-catenin/MMP7 signaling.
RESUMO
In the present study, we design a tunable plasmonic refractive index sensor with nanoring-strip graphene arrays. The calculations prove that the nanoring-strip have two transmission dips. By changing the strip length L of the present structure, we find that the nanoring-strip graphene arrays have a wide range of resonances (resonance wavelength increases from 17.73 µm to 28.15 µm). When changing the sensing medium refractive index nmed, the sensitivity of mode A and B can reach 2.97 µm/RIU and 5.20 µm/RIU. By changing the doping level ng, we notice that the transmission characteristics can be tuned flexibly. Finally, the proposed sensor also shows good angle tolerance for both transverse magnetic (TM) and transverse electric (TE) polarizations. The proposed nanoring-strip graphene arrays along with the numerical results could open a new avenue to realize various tunable plasmon devices and have a great application prospect in biosensing, detection, and imaging.
RESUMO
Using a customized ultrasound setup we investigate the feasibility of using a contactless approach to study the bulk mechanical properties of swollen hydrogels. The study involved two different hydrogels, gelatin methacrylate (GelMa) and green algae extract methacrylate (GAEM), which were prepared to provide materials with varying modulus and different swelling properties. Two approaches have been developed. In the first case, ultrasound was compared to Young's modulus measured by indentation. It was found that can be linearly related to indentation modulus values only when the hydrogel swelling ratio is taken into account. In the second approach, an exponential dependency between swelled thickness and indentation modulus was found. This is representative for each hydrogel and purification method in addition to being independent of the conditions used within the toughness range explored. The results of this study indicate that a simple thickness measurement via the proposed approach can provide a direct relationship to Young's modulus upon calibration.