Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076841

RESUMO

CRISPR-Cas9 gene drives (CCGDs) are powerful tools for genetic control of wild populations, useful for eradication of disease vectors, conservation of endangered species and other applications. However, Cas9 alone and in a complex with gRNA can cause double-stranded DNA breaks at off-target sites, which could increase the mutational load and lead to loss of heterozygosity (LOH). These undesired effects raise potential concerns about the long-term evolutionary safety of CCGDs, but the magnitude of these effects is unknown. To estimate how the presence of a CCGD or a Cas9 alone in the genome affects the rates of LOH events and de novo mutations, we carried out a mutation accumulation experiment in yeast Saccharomyces cerevisiae. Despite its substantial statistical power, our experiment revealed no detectable effect of CCGD or Cas9 alone on the genome-wide rates of mutations or LOH events, suggesting that these rates are affected by less than 30%. Nevertheless, we found that Cas9 caused a slight but significant shift towards more interstitial and fewer terminal LOH events, and the CCGD caused a significant difference in the distribution of LOH events on Chromosome V. Taken together, our results show that these genetic elements impose a weak and likely localized additional mutational burden in the yeast model. Although the mutagenic effects of CCGDs need to be further evaluated in other systems, our results suggest that the effect of CCGDs on off-target mutation rates and genetic diversity may be acceptable.

2.
Commun Biol ; 5(1): 842, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986208

RESUMO

Postmating-prezygotic (PMPZ) reproductive isolation is hypothesized to result from divergent coevolutionary trajectories of sexual selection and/or sexual conflict in isolated populations. However, the genetic basis of PMPZ incompatibilities between species is poorly understood. Here, we use a comparative framework to compare global gene expression in con- and heterospecifically mated Drosophila mojavensis and D. arizonae female reproductive tracts. We find striking divergence between the species in the female postmating transcriptional response to conspecific mating, including differences in differential expression (DE), alternative splicing (AS), and intron retention (IR). As predicted, heterospecific matings produce disrupted transcriptional profiles, but the overall patterns of misregulation are different between the reciprocal crosses. Moreover, we find a positive correlation between postmating transcriptional divergence between species and levels of transcriptional disruption in heterospecific crosses. This result indicates that mating responsive genes that have diverged more in expression also have more disrupted transcriptional profiles in heterospecifically mated females. Overall, our results provide insights into the evolution of PMPZ isolation and lay the foundation for future studies aimed at identifying specific genes involved in PMPZ incompatibilities and the evolutionary forces that have contributed to their divergence in closely related species.


Assuntos
Drosophila , Isolamento Reprodutivo , Animais , Drosophila/genética , Feminino , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA