Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zool Res ; 45(2): 242-252, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38287905

RESUMO

PTEN-induced putative kinase 1 (PINK1), a mitochondrial kinase that phosphorylates Parkin and other proteins, plays a crucial role in mitophagy and protection against neurodegeneration. Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease. However, there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration. Additionally, PINK1 knockout pigs ( Sus scrofa) do not appear to exhibit neurodegeneration. In our recent work involving non-human primates, we found that PINK1 is selectively expressed in primate brains, while absent in rodent brains. To extend this to other species, we used multiple antibodies to examine the expression of PINK1 in pig tissues. In contrast to tissues from cynomolgus monkeys ( Macaca fascicularis), our data did not convincingly demonstrate detectable PINK1 expression in pig tissues. Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation, as observed in cultured monkey cells. A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain. Consistently, PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD. These findings provide new evidence that PINK1 expression is specific to primates, underscoring the importance of non-human primates in investigating PINK1 function and pathology related to PINK1 deficiency.


Assuntos
Primatas , Proteínas Quinases , Animais , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Primatas/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Haplorrinos
2.
Cell Mol Life Sci ; 79(11): 554, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251080

RESUMO

Huntingtin-associated protein 1 (HAP1) is the first identified protein whose function is affected by its abnormal interaction with mutant huntingtin (mHTT), which causes Huntington disease. However, the expression patterns of Hap1 and Htt in the rodent brain are not correlated. Here we found that the primate HAP1, unlike the rodent Hap1, is correlatively expressed with HTT in the primate brains. CRISPR/Cas9 targeting revealed that HAP1 deficiency in the developing human neurons did not affect neuronal differentiation and gene expression as seen in the mouse neurons. However, deletion of HAP1 exacerbated neurotoxicity of mutant HTT in the organotypic brain slices of adult monkeys. These findings demonstrate differential HAP1 expression and function in the mouse and primate brains, and suggest that interaction of HAP1 with mutant HTT may be involved in mutant HTT-mediated neurotoxicity in adult primate neurons.


Assuntos
Proteína Huntingtina , Doença de Huntington , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Primatas/genética , Primatas/metabolismo
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 10(5): 438-40, 2002 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-12513744

RESUMO

In order to establish a new more rapid, safe and sensitive colorimetric assay for the proliferation of leukemic cells, MTS/pms has been developed. This automated colorimetric assay is based on the characteristic of viable and metabolically active leukemic cells to cleave MTS/pms into a water-soluble product whose optical density is determined at 492 nm by an automated microtiter-plate reader photometer. The results indicated that only active leukemic cells cleaved MTS/pms into product measured, and dead cells did not reduce MTS/pms. A linear relations hip were found between the viable cell number and optical density of MTS/pms cleaved by HL-60 and K562 cell (r = 0.963). Compared with MTT and INT assays, the reduced product of MTS/pms is water-soluble. It is concluded that MTS/pms colorimetric assay is more rapid, accurate and sensitive for the bioassay of proliferation of leukemic cells.


Assuntos
Colorimetria/métodos , Leucemia/patologia , Metilfenazônio Metossulfato/metabolismo , Sais de Tetrazólio/metabolismo , Tiazóis/metabolismo , Divisão Celular , Formazans/metabolismo , Células HL-60 , Humanos , Células K562
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 10(2): 112-4, 2002 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-12513810

RESUMO

In order to study the relationship between the expression of glutathione S-transferase (GST) in leukemic cells and the chemoresistance in patients with acute leukemia, the expressions of GST activity and GST mRNA were measured according to spectrophotometric assay based on the use of 1-choloro-2, 4-dinitro benzene and in situ hybridization. The results were studied in correlation with some clinical and pathological data. Results showed that: 1. There is no significant differences between activities of the enzyme with the different leukemia types according to the FAB classification. 2. GST activity and GST mRNA expression in the patients, both untreated and relapse, were (4.5 +/- 1.0) U, 33.3% and (7.9 +/- 15) U, 66.3% respectively. 3. In 56 patients, GST activity was 1.7 +/- 0.7, 5.9 +/- 2.0 and 9.3 +/- 1.7 U and GST mRNA expression was 13.3%, 29.7% and 76.6%, respectively, in CR, PR and NR groups. The lowest values of GST activity and GST mRNA expression were observed in those patients who achieved complete remission. The highest values of GST activity and GST mRNA expression were observed in those patients with no response to treatment. It was concluded that the expression of GST in patients with acute leukemia is closely related to the chemosensitivities clinically. Determinations of GST activity and GST mRNA are useful for predicting the chemosensitivities and the prognosis of the disease.


Assuntos
Glutationa Transferase/metabolismo , Leucemia/enzimologia , Adolescente , Adulto , Idoso , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glutationa Transferase/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Células K562 , Leucemia/tratamento farmacológico , Leucemia/genética , Leucemia Linfoide/tratamento farmacológico , Leucemia Linfoide/enzimologia , Leucemia Linfoide/genética , Leucemia Monocítica Aguda/tratamento farmacológico , Leucemia Monocítica Aguda/enzimologia , Leucemia Monocítica Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/enzimologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA