Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(20): e202402621, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38443314

RESUMO

The incorporation of pentagon-heptagon pairs into helical nanographenes lacks a facile synthetic route, and the impact of these pairs on chiroptical properties remains unclear. In this study, a method for the stepwise construction of pentagon-heptagon pairs in helical nanographenes by the dehydrogenation of [6]helicene units was developed. Three helical nanographenes containing pentagon-heptagon pairs were synthesized and characterized using this approach. A wide variation in the molecular geometries and photophysical properties of these helical nanographenes was observed, with changes in the helical length of these structures and the introduction of the pentagon-heptagon pairs. The embedded pentagon-heptagon pairs reduced the oxidation potential of the synthesized helical nanographenes. The high isomerization energy barriers enabled the chiral resolution of the helicene enantiomers. Chiroptical investigations revealed remarkably enhanced circularly polarized luminescence and luminescence dissymmetry factors with an increasing number of the pentagon-heptagon pairs.

2.
Angew Chem Int Ed Engl ; 63(2): e202315302, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38009464

RESUMO

Nitrogen-doped cavities are pervasive in graphenic materials, and represent key sites for catalytic and electrochemical activity. However, their structures are generally heterogeneous. In this study, we present the synthesis of a well-defined molecular cutout of graphene featuring N-doped cavity. The graphitization of a macrocyclic pyridinic precursor was achieved through photochemical cyclodehydrochlorination. In comparison to its counterpart with pyridinic nitrogen at the edges, the pyridinic nitrogen atoms in this nanographene cavity exhibit significantly reduced basicity and selective binding to Ag+ ion. Analysis of the protonation and coordination equilibria revealed that the tri-N-doped cavity binds three protons, but only one Ag+ ion. These distinct protonation and coordination behaviors clearly illustrate the space confinement effect imparted by the cavities.

3.
Chem Sci ; 13(6): 1636-1640, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35282620

RESUMO

Well-studied cycloparaphenylenes (CPPs) correspond to the simplest segments of armchair CNTs, whereas the corresponding macrocyclic oligophenylene strip of zigzag CNTs is still missing. Herein, we present two series of conjugated macrocycles (CM2PP and CN2PP) containing two meta-phenylene or 2,7-naphthylene units facing each other in the strip. CM2PP and CN2PP can be regarded as the shortest cyclic primitive segments of zigzag CNTs. They were synthesized by gold-mediated dimerization and unambiguously characterized. They adopted the tubular structures and can further pack into one-dimensional supramolecular nanotubes. In particular, the supramolecular nanotube of CM2P4P mimics the CNT(9, 0) structure. Structural analysis and theoretical calculation accounted for the reduced ring strain in CM2PPs and CN2PPs. CM2PPs and CN2PPs exhibited a large optical extinction coefficient and high photoluminescence quantum yield. CN2P8P can accommodate fullerene C60, forming a Saturn-like C60@CN2P8P complex, a mimic structure of zigzag CNT peapods.

4.
Angew Chem Int Ed Engl ; 61(18): e202116955, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35191583

RESUMO

Although heptagons are widely found in graphenic materials, the precise synthesis of nanocarbons containing heptagons remains a challenge, especially for the nanocarbons containing multiple-heptagons. Herein, we show that photo-induced radical cyclization (PIRC) can be used to synthesize multi-heptagon-embedded nanocarbons. Notably, a nanographene containing six heptagons (1) was obtained via a six-fold cascade PIRC reaction. The structure of 1 was clearly validated and showed a Monkey-saddle-shaped conformation. Experimental bond analysis and theoretical calculations indicated that the heptagons in 1 were non-aromatic, whereas the peripheral rings were highly aromatic. Compared to planar nanographene with the same number of π electrons, 1 had a similar optical gap due to a compromise between the decreased conjugation in the wrapped structure and enhanced electronic delocalization at the rim. Electrochemical studies showed that 1 had low-lying oxidation potentials, which was attributed to the nitrogen-doping.

5.
Chirality ; 30(3): 268-274, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29232000

RESUMO

Numbers of resolving factors were investigated to improve resolution of venlafaxine 1. An effective resolving agent, O,O'-di-p-toluoyl-(R, R)-tartaric acid 2, was screened using similar method of 'Dutch resolution' from tartaric acid derivatives. The resolution efficiency was up to 88.4%, when the ratio of rac-1 and 2 was 1:0.8 in THF with little water (10:1 v/v). Enantiomerically pure venlafaxine was prepared with 99.1% ee in 82.2% yield. The chiral resolution mechanism was first explained through X-ray crystallographic study. One diastereomeric salt with well solubility forms a columnar supramolecular structure as the acidic salt (R)-1·2, while the other diastereomeric salt with less solubility forms a multilayered sandwich supramolecular structure by enantio-differentiation self-assembly as the neutral salt 2(S)-1·2. The water molecules play a key role in the optical resolution, as indicated by the special structures of the diastereomeric salts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA