Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cancer ; 130(2): 232-243, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776537

RESUMO

BACKGROUND: Resistance to BRAF and MEK inhibitors in BRAF V600-mutant melanoma is common. Multiple resistance mechanisms involve heat-shock protein 90 (HSP90) clients, and a phase 1 study of vemurafenib with the HSP90 inhibitor XL888 in patients with advanced melanoma showed activity equivalent to that of BRAF and MEK inhibitors. METHODS: Vemurafenib (960 mg orally twice daily) and cobimetinib (60 mg orally once daily for 21 of 28 days) with escalating dose cohorts of XL888 (30, 45, 60, or 90 mg orally twice weekly) was investigated in a phase 1 trial of advanced melanoma, with a modified Ji dose-escalation design. RESULTS: Twenty-five patients were enrolled. After two dose-limiting toxicities (DLTs) (rash and acute kidney injury) in the first cohort, lower doses of vemurafenib (720 mg) and cobimetinib (40 mg) were investigated with the same XL888 doses. Three DLTs (rash) were observed in 12 patients in the XL888 60-mg cohort, and this was determined as the maximum tolerated dose. Objective responses were observed in 19 patients (76%), and the median progression-free survival was 7.6 months, with a 5-year progression-free survival rate of 20%. The median overall survival was 41.7 months, with a 5-year overall survival rate of 37%. Single-cell RNA sequencing was performed on baseline and on-treatment biopsies; treatment was associated with increased immune cell influx (CD4-positive and CD8-positive T cells) and decreased melanoma cells. CONCLUSIONS: Combined vemurafenib and cobimetinib plus XL888 had significant toxicity, requiring frequent dose reductions, which may have contributed to the relatively low progression-free survival despite a high tumor response rate. Given overlapping toxicities, caution must be used when combining HSP90 inhibitors with BRAF and MEK inhibitors.


Assuntos
Exantema , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Vemurafenib , Proteínas Proto-Oncogênicas B-raf , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Exantema/induzido quimicamente , Exantema/tratamento farmacológico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
2.
J Immunother Cancer ; 11(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056899

RESUMO

BACKGROUND: Although the anti-PD-1+LAG-3 and the anti-PD-1+CTLA-4 combinations are effective in advanced melanoma, it remains unclear whether their mechanisms of action overlap. METHODS: We used single cell (sc) RNA-seq, flow cytometry and IHC analysis of responding SM1, D4M-UV2 and B16 melanoma flank tumors and SM1 brain metastases to explore the mechanism of action of the anti-PD-1+LAG-3 and the anti-PD-1+CTLA-4 combination. CD4+ and CD8+ T cell depletion, tetramer binding assays and ELISPOT assays were used to demonstrate the unique role of CD4+T cell help in the antitumor effects of the anti-PD-1+LAG-3 combination. RESULTS: The anti-PD-1+CTLA-4 combination was associated with the infiltration of FOXP3+regulatory CD4+ cells (Tregs), fewer activated CD4+T cells and the accumulation of a subset of IFNγ secreting cytotoxic CD8+T cells, whereas the anti-PD-1+LAG-3 combination led to the accumulation of CD4+T helper cells that expressed CXCR4, TNFSF8, IL21R and a subset of CD8+T cells with reduced expression of cytotoxic markers. T cell depletion studies showed a requirement for CD4+T cells for the anti-PD-1+LAG-3 combination, but not the PD-1-CTLA-4 combination at both flank and brain tumor sites. In anti-PD-1+LAG-3 treated tumors, CD4+T cell depletion was associated with fewer activated (CD69+) CD8+T cells and impaired IFNγ release but, conversely, increased numbers of activated CD8+T cells and IFNγ release in anti-PD-1+CTLA-4 treated tumors. CONCLUSIONS: Together these studies suggest that these two clinically relevant immune checkpoint inhibitor (ICI) combinations have differential effects on CD4+T cell polarization, which in turn, impacted cytotoxic CD8+T cell function. Further insights into the mechanisms of action/resistance of these clinically-relevant ICI combinations will allow therapy to be further personalized.


Assuntos
Neoplasias Encefálicas , Melanoma Experimental , Animais , Humanos , Linfócitos T CD4-Positivos , Antígeno CTLA-4 , Linfócitos T Citotóxicos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo
3.
Nat Commun ; 14(1): 7759, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030596

RESUMO

Melanomas can adopt multiple transcriptional states. Little is known about the epigenetic drivers of these cell states, limiting our ability to regulate melanoma heterogeneity. Here, we identify stress-induced HDAC8 activity as driving melanoma brain metastasis development. Exposure of melanocytes and melanoma cells to multiple stresses increases HDAC8 activation leading to a neural crest-stem cell transcriptional state and an amoeboid, invasive phenotype that increases seeding to the brain. Using ATAC-Seq and ChIP-Seq we show that increased HDAC8 activity alters chromatin structure by increasing H3K27ac and enhancing accessibility at c-Jun binding sites. Functionally, HDAC8 deacetylates the histone acetyltransferase EP300, causing its enzymatic inactivation. This, in turn, increases binding of EP300 to Jun-transcriptional sites and decreases binding to MITF-transcriptional sites. Inhibition of EP300 increases melanoma cell invasion, resistance to stress and increases melanoma brain metastasis development. HDAC8 is identified as a mediator of transcriptional co-factor inactivation and chromatin accessibility that drives brain metastasis.


Assuntos
Neoplasias Encefálicas , Proteína p300 Associada a E1A , Histona Desacetilases , Melanoma , Humanos , Neoplasias Encefálicas/secundário , Cromatina/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Melanócitos/metabolismo , Melanoma/patologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
4.
BMC Bioinformatics ; 24(1): 266, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380943

RESUMO

Pathway-level survival analysis offers the opportunity to examine molecular pathways and immune signatures that influence patient outcomes. However, available survival analysis algorithms are limited in pathway-level function and lack a streamlined analytical process. Here we present a comprehensive pathway-level survival analysis suite, PATH-SURVEYOR, which includes a Shiny user interface with extensive features for systematic exploration of pathways and covariates in a Cox proportional-hazard model. Moreover, our framework offers an integrative strategy for performing Hazard Ratio ranked Gene Set Enrichment Analysis and pathway clustering. As an example, we applied our tool in a combined cohort of melanoma patients treated with checkpoint inhibition (ICI) and identified several immune populations and biomarkers predictive of ICI efficacy. We also analyzed gene expression data of pediatric acute myeloid leukemia (AML) and performed an inverse association of drug targets with the patient's clinical endpoint. Our analysis derived several drug targets in high-risk KMT2A-fusion-positive patients, which were then validated in AML cell lines in the Genomics of Drug Sensitivity database. Altogether, the tool offers a comprehensive suite for pathway-level survival analysis and a user interface for exploring drug targets, molecular features, and immune populations at different resolutions.


Assuntos
Leucemia Mieloide Aguda , Melanoma , Criança , Humanos , Reposicionamento de Medicamentos , Oncologia , Melanoma/tratamento farmacológico , Melanoma/genética , Algoritmos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
5.
Anal Chem ; 95(18): 7127-7133, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37115510

RESUMO

Mass spectrometry (MS) has become an indispensable tool for metabolomics studies. However, due to the lack of applicable experimental platforms, suitable algorithm, software, and quantitative analyses of cell heterogeneity and subpopulations, investigating global metabolomics profiling at the single cell level remains challenging. We combined the Single-probe single cell MS (SCMS) experimental technique with a bioinformatics software package, SinCHet-MS (Single Cell Heterogeneity for Mass Spectrometry), to characterize changes of tumor heterogeneity, quantify cell subpopulations, and prioritize the metabolite biomarkers of each subpopulation. As proof of principle studies, two melanoma cancer cell lines, the primary (WM115; with a lower drug resistance) and the metastatic (WM266-4; with a higher drug resistance), were used as models. Our results indicate that after the treatment of the anticancer drug vemurafenib, a new subpopulation emerged in WM115 cells, while the proportion of the existing subpopulations was changed in the WM266-4 cells. In addition, metabolites for each subpopulation can be prioritized. Combining the SCMS experimental technique with a bioinformatics tool, our label-free approach can be applied to quantitatively study cell heterogeneity, prioritize markers for further investigation, and improve the understanding of cell metabolism in human diseases and response to therapy.


Assuntos
Antineoplásicos , Melanoma , Humanos , Metabolômica/métodos , Espectrometria de Massas/métodos , Algoritmos , Melanoma/tratamento farmacológico , Melanoma/patologia
6.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187773

RESUMO

Leptomeningeal disease (LMD) occurs when tumors seed into the leptomeningeal space and cerebrospinal fluid (CSF), leading to severe neurological deterioration and poor survival outcomes. We utilized comprehensive multi-omics analyses of CSF from patients with lymphoma LMD to demonstrate an immunosuppressive cellular microenvironment and identified dysregulations in proteins and lipids indicating neurodegenerative processes. Strikingly, we found a significant accumulation of toxic branched-chain keto acids (BCKA) in the CSF of patients with LMD. The BCKA accumulation was found to be a pan-cancer occurrence, evident in lymphoma, breast cancer, and melanoma LMD patients. Functionally, BCKA disrupted the viability and function of endogenous T lymphocytes, chimeric antigen receptor (CAR) T cells, neurons, and meningeal cells. Treatment of LMD mice with BCKA-reducing sodium phenylbutyrate significantly improved neurological function, survival outcomes, and efficacy of anti-CD19 CAR T cell therapy. This is the first report of BCKA accumulation in LMD and provides preclinical evidence that targeting these toxic metabolites improves outcomes.

7.
Sci Signal ; 15(747): eabj5879, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973030

RESUMO

Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are often linked to drug resistance. Here, we found that coculture with CAFs or culture in CAF-conditioned medium unexpectedly induced drug sensitivity in certain lung cancer cell lines. Gene expression and secretome analyses of CAFs and normal lung-associated fibroblasts (NAFs) revealed differential abundance of insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs), which promoted or inhibited, respectively, signaling by the receptor IGF1R and the kinase FAK. Similar drug sensitization was seen in gefitinib-resistant, EGFR-mutant PC9GR lung cancer cells treated with recombinant IGFBPs. Conversely, drug sensitivity was decreased by recombinant IGFs or conditioned medium from CAFs in which IGFBP5 or IGFBP6 was silenced. Phosphoproteomics and receptor tyrosine kinase (RTK) array analyses indicated that exposure of PC9GR cells to CAF-conditioned medium also inhibited compensatory IGF1R and FAK signaling induced by the EGFR inhibitor osimertinib. Combined small-molecule inhibition of IGF1R and FAK phenocopied the CAF-mediated effects in culture and increased the antitumor effect of osimertinib in mice. Cells that were osimertinib resistant and had MET amplification or showed epithelial-to-mesenchymal transition also displayed residual sensitivity to IGFBPs. Thus, CAFs promote or reduce drug resistance in a context-dependent manner, and deciphering the relationship between the differential content of CAF secretomes and the signaling dependencies of the tumor may reveal effective combination treatment strategies.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Animais , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/farmacologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/uso terapêutico , Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Microambiente Tumoral
8.
Clin Cancer Res ; 28(10): 2131-2146, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35247927

RESUMO

PURPOSE: Acral melanoma is a rare subtype of melanoma that arises on the non-hair-bearing skin of the palms, soles, and nail beds. In this study, we used single-cell RNA sequencing (scRNA-seq) to map the transcriptional landscape of acral melanoma and identify novel immunotherapeutic targets. EXPERIMENTAL DESIGN: We performed scRNA-seq on nine clinical specimens (five primary, four metastases) of acral melanoma. Detailed cell type curation was performed, the immune landscapes were mapped, and key results were validated by analysis of The Cancer Genome Atlas (TCGA) and single-cell datasets. Cell-cell interactions were inferred and compared with those in nonacral cutaneous melanoma. RESULTS: Multiple phenotypic subsets of T cells, natural killer (NK) cells, B cells, macrophages, and dendritic cells with varying levels of activation/exhaustion were identified. A comparison between primary and metastatic acral melanoma identified gene signatures associated with changes in immune responses and metabolism. Acral melanoma was characterized by a lower overall immune infiltrate, fewer effector CD8 T cells and NK cells, and a near-complete absence of γδ T cells compared with nonacral cutaneous melanomas. Immune cells associated with acral melanoma exhibited expression of multiple checkpoints including PD-1, LAG-3, CTLA-4, V-domain immunoglobin suppressor of T cell activation (VISTA), TIGIT, and the Adenosine A2A receptor (ADORA2). VISTA was expressed in 58.3% of myeloid cells and TIGIT was expressed in 22.3% of T/NK cells. CONCLUSIONS: Acral melanoma has a suppressed immune environment compared with that of cutaneous melanoma from nonacral skin. Expression of multiple, therapeutically tractable immune checkpoints were observed, offering new options for clinical translation.


Assuntos
Melanoma , Segunda Neoplasia Primária , Neoplasias Cutâneas , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Melanoma/tratamento farmacológico , Melanoma/terapia , Pele/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/terapia , Melanoma Maligno Cutâneo
9.
Cancer Res ; 82(9): 1724-1735, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35176128

RESUMO

DNA methylation signatures in tumors could serve as reliable biomarkers that are accessible in archival tissues for tracking the epigenetic dynamics shaped by both cancer cells and the tumor microenvironment. However, given the ultrahigh dimensionality and noncollapsible nature of the data, it remains challenging to screen all CpG sites to identify the most promising marker panels. In this article, we introduce the concept of tumor-based expression quantitative trait methylation (eQTM) for the prioritization and systematic mining of predictive biomarkers. In melanoma as a disease model, eQTM CpGs and genes represent new and efficient candidate targets to be investigated for both prognostic and immune status monitoring purposes. Three cis-eQTM CpGs (cg07786657, cg12446199, and cg00027570) were strongly associated with and can serve as surrogate biomarkers for the tumor immune cytolytic activity score (CYT). In addition, multiple eQTM genes could be further exploited for predicting immunoregulatory phenotypes. A targeted gene panel analysis identified one eQTM in TCF7 (cg25947408) as a novel candidate biomarker for uncoupling overall T-cell differentiation and exhaustion status in a tumor. The prognostic significance of this eQTM as an independent signature to CYT was validated by both The Cancer Genome Atlas and Moffitt melanoma cohort data. Overall, eQTMs represent a mechanistically distinct class of potential biomarkers that can be used to predict patient prognosis and immune status. SIGNIFICANCE: This study provides a novel and promising approach to identify targeted epigenetic biomarkers in cancer and will spur further analysis in tumor immune phenotyping.


Assuntos
Metilação de DNA , Melanoma , Biomarcadores Tumorais/genética , Ilhas de CpG/genética , Detecção Precoce de Câncer , Epigenômica , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/patologia , Fenótipo , Prognóstico , Microambiente Tumoral/genética
11.
Clin Cancer Res ; 27(14): 4109-4125, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34035069

RESUMO

PURPOSE: Melanoma brain metastases (MBM) and leptomeningeal melanoma metastases (LMM) are two different manifestations of melanoma CNS metastasis. Here, we used single-cell RNA sequencing (scRNA-seq) to define the immune landscape of MBM, LMM, and melanoma skin metastases. EXPERIMENTAL DESIGN: scRNA-seq was undertaken on 43 patient specimens, including 8 skin metastases, 14 MBM, and 19 serial LMM specimens. Detailed cell type curation was performed, the immune landscapes were mapped, and key results were validated by IHC and flow cytometry. Association analyses were undertaken to identify immune cell subsets correlated with overall survival. RESULTS: The LMM microenvironment was characterized by an immune-suppressed T-cell landscape distinct from that of brain and skin metastases. An LMM patient with long-term survival demonstrated an immune repertoire distinct from that of poor survivors and more similar to normal cerebrospinal fluid (CSF). Upon response to PD-1 therapy, this extreme responder showed increased levels of T cells and dendritic cells in their CSF, whereas poor survivors showed little improvement in their T-cell responses. In MBM patients, therapy led to increased immune infiltrate, with similar T-cell transcriptional diversity noted between skin metastases and MBM. A correlation analysis across the entire immune landscape identified the presence of a rare population of dendritic cells (DC3) that was associated with increased overall survival and positively regulated the immune environment through modulation of activated T cells and MHC expression. CONCLUSIONS: Our study provides the first atlas of two distinct sites of melanoma CNS metastases and defines the immune cell landscape that underlies the biology of this devastating disease.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/secundário , Melanoma/imunologia , Melanoma/patologia , Melanoma/secundário , Neoplasias Meníngeas/imunologia , Neoplasias Meníngeas/secundário , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral/imunologia , Humanos
12.
JAMA Dermatol ; 157(7): 831-835, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33978681

RESUMO

IMPORTANCE: Acral skin may develop nevi, but their mutational status and association with acral melanoma is unclear. OBJECTIVE: To perform targeted next-generation sequencing on a cohort of acral nevi to determine their mutational spectrum. DESIGN, SETTING, AND PARTICIPANTS: Acral nevi specimens (n = 50) that had been obtained for diagnostic purposes were identified from the pathology archives of a tertiary care academic cancer center and a university dermatology clinic. Next-generation sequencing was performed on DNA extracted from the specimens, and mutations called. A subset of samples was stained immunohistochemically for the BRAF V600E mutation. RESULTS: A total of 50 nevi from 49 patients (19 males and 30 females; median [range] age, 48 [13-85] years) were examined. Analysis of the sequencing data revealed a high prevalence of BRAF mutations (n = 43), with a lower frequency of NRAS mutations (n = 5). Mutations in BRAF and NRAS were mutually exclusive. CONCLUSIONS AND RELEVANCE: In this cohort study, nevi arising on mostly sun-protected acral skin showed a rate of BRAF mutation similar to that of acquired nevi on sun-exposed skin but far higher than that of acral melanoma. These findings are in contrast to the well-characterized mutational landscape of acral melanoma.


Assuntos
Nevo , Neoplasias Cutâneas , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Nevo/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética
13.
Methods Mol Biol ; 2194: 143-175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926366

RESUMO

High-throughput sequencing (HTS) has revolutionized researchers' ability to study the human transcriptome, particularly as it relates to cancer. Recently, HTS technology has advanced to the point where now one is able to sequence individual cells (i.e., "single-cell sequencing"). Prior to single-cell sequencing technology, HTS would be completed on RNA extracted from a tissue sample consisting of multiple cell types (i.e., "bulk sequencing"). In this chapter, we review the various bioinformatics and statistical methods used in the processing, quality control, and analysis of bulk and single-cell RNA sequencing methods. Additionally, we discuss how these methods are also being used to study tumor heterogeneity.


Assuntos
Biologia Computacional/métodos , Neoplasias/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Interpretação Estatística de Dados , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Controle de Qualidade , Neoplasias Cutâneas/genética
14.
Methods Mol Biol ; 2194: 187-221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926368

RESUMO

Highly collaborative scientists are often called on to extend their expertise to different types of projects and to expand the scope and scale of projects well beyond their previous experience. For a large-scale project involving "big data" to be successful, several different aspects of the research plan need to be developed and tested, which include but are not limited to the experimental design, sample collection, sample preparation, metadata recording, technical capability, data acquisition, approaches for data analysis, methods for integration of different data types, recruitment of additional expertise as needed to guide the project, and strategies for clear communication throughout the project. To capture this process, we describe an example project in proteogenomics that built on our collective expertise and experience. Key steps included definition of hypotheses, identification of an appropriate clinical cohort, pilot projects to assess feasibility, refinement of experimental designs, and extensive discussions involving the research team throughout the process. The goal of this chapter is to provide the reader with a set of guidelines to support development of other large-scale multiomics projects.


Assuntos
Bioestatística/métodos , Pesquisa Interdisciplinar/métodos , Proteogenômica/métodos , Big Data , Estudos de Coortes , Expressão Gênica , Genômica/métodos , Humanos , Projetos Piloto , Proteômica/métodos , Projetos de Pesquisa
15.
Cancer Epidemiol Biomarkers Prev ; 29(9): 1792-1799, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32611582

RESUMO

BACKGROUND: MUC16 is a mucin marker that is frequently mutated in melanoma, but whether MUC16 mutations could be useful as a surrogate biomarker for tumor mutation burden (TMB) remains unclear. METHODS: This study rigorously evaluates the MUC16 mutation as a clinical biomarker in cutaneous melanoma by utilizing genomic and clinical data from patient samples from The Cancer Genome Atlas (TCGA) and two independent validation cohorts. We further extended the analysis to studies with patients treated with immunotherapies. RESULTS: Analysis results showed that samples with MUC16 mutations had a higher TMB than the samples of wild-type, with strong statistical significance (P < 0.001) in all melanoma cohorts tested. Associations between MUC16 mutations and TMB remained statistically significant after adjusting for potential confounding factors in the TCGA cohort [OR, 9.28 (95% confidence interval (CI), 5.18-17.39); P < 0.001], Moffitt cohort [OR, 31.95 (95% CI, 8.71-163.90); P < 0.001], and Yale cohort [OR, 8.09 (95% CI, 3.12-23.79); P < 0.01]. MUC16 mutations were also found to be associated with overall survival in the TCGA [HR, 0.62; (95% CI, 0.45-0.85); P < 0.01] and Moffitt cohorts [HR, 0.49 (95% CI, 0.28-0.87); P = 0.014]. Strikingly, MUC16 is the only top frequently mutated gene for which prognostic significance was observed. MUC16 mutations were also found valuable in predicting anti-CTLA-4 and anti-PD-1 therapy responses. CONCLUSIONS: MUC16 mutation appears to be a useful predictive marker of global TMB and patient survival in melanoma. IMPACT: This is, to the best of our knowledge, the first systematic evaluation of MUC16 mutation as a clinical biomarker and a predictive biomarker for immunotherapy in melanoma.


Assuntos
Antígeno Ca-125/genética , Melanoma/genética , Proteínas de Membrana/genética , Neoplasias Cutâneas/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígeno Ca-125/metabolismo , Feminino , Humanos , Masculino , Melanoma/metabolismo , Melanoma/mortalidade , Melanoma/patologia , Proteínas de Membrana/metabolismo , Mutação , Prognóstico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Análise de Sobrevida , Melanoma Maligno Cutâneo
16.
Front Immunol ; 11: 164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161584

RESUMO

Phenotyping of immune cell subsets in clinical trials is limited to well-defined phenotypes, due to technological limitations of reporting flow cytometry multi-dimensional phenotyping data. We developed a multi-dimensional phenotyping analysis tool and applied it to detect nitric oxide (NO) levels in peripheral blood immune cells before and after adjuvant ipilimumab co-administration with a peptide vaccine in melanoma patients. We analyzed inhibitory and stimulatory markers for immune cell phenotypes that were felt to be important in the NO analysis. The pipeline allows visualization of immune cell phenotypes without knowledge of clustering techniques and to categorize cells by association with relapse-free survival (RFS). Using this analysis, we uncovered the potential for a dichotomous role of NO as a pro- and anti-melanoma factor. NO was found in subsets of immune-suppressor cells associated with shorter-term (≤ 1 year) RFS, whereas NO was also present in immune-stimulatory effector cells obtained from patients with significant longer-term (> 1 year) RFS. These studies provide insights into the cell-specific immunomodulatory role of NO. The methods presented herein can be applied to monitor the pro- and anti-tumor effects of a variety of immune-based therapeutics in cancer patients. Clinical Trial Registration Number: NCT00084656 (https://clinicaltrials.gov/ct2/show/NCT00084656).


Assuntos
Citometria de Fluxo/métodos , Imunoterapia/métodos , Leucócitos Mononucleares/imunologia , Melanoma/imunologia , Melanoma/terapia , Óxido Nítrico/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Adulto , Idoso , Antineoplásicos Imunológicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Feminino , Humanos , Imunidade , Ipilimumab/uso terapêutico , Masculino , Melanoma/sangue , Pessoa de Meia-Idade , Óxido Nítrico/imunologia , Fenótipo , Neoplasias Cutâneas/sangue , Vacinas de Subunidades Antigênicas/uso terapêutico , Adulto Jovem
17.
Bioinformatics ; 36(1): 257-263, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199438

RESUMO

MOTIVATION: Missingness in label-free mass spectrometry is inherent to the technology. A computational approach to recover missing values in metabolomics and proteomics datasets is important. Most existing methods are designed under a particular assumption, either missing at random or under the detection limit. If the missing pattern deviates from the assumption, it may lead to biased results. Hence, we investigate the missing patterns in free mass spectrometry data and develop an omnibus approach GMSimpute, to allow effective imputation accommodating different missing patterns. RESULTS: Three proteomics datasets and one metabolomics dataset indicate missing values could be a mixture of abundance-dependent and abundance-independent missingness. We assess the performance of GMSimpute using simulated data (with a wide range of 80 missing patterns) and metabolomics data from the Cancer Genome Atlas breast cancer and clear cell renal cell carcinoma studies. Using Pearson correlation and normalized root mean square errors between the true and imputed abundance, we compare its performance to K-nearest neighbors' type approaches, Random Forest, GSimp, a model-based method implemented in DanteR and minimum values. The results indicate GMSimpute provides higher accuracy in imputation and exhibits stable performance across different missing patterns. In addition, GMSimpute is able to identify the features in downstream differential expression analysis with high accuracy when applied to the Cancer Genome Atlas datasets. AVAILABILITY AND IMPLEMENTATION: GMSimpute is on CRAN: https://cran.r-project.org/web/packages/GMSimpute/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Espectrometria de Massas , Viés , Análise por Conglomerados , Biologia Computacional/métodos , Limite de Detecção , Metabolômica , Proteômica
18.
Blood Adv ; 3(22): 3579-3589, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31738830

RESUMO

Myelodysplastic syndromes (MDS) are hematopoietic stem cell malignancies. Known predisposing factors to adult MDS include rare germline mutations, cytotoxic therapy, age-related clonal hematopoiesis, and autoimmune or chronic inflammatory disorders. To date, no published studies characterizing MDS-associated germline susceptibility polymorphisms exist. We performed a genome-wide association study of 2 sample sets (555 MDS cases vs 2964 control subjects; 352 MDS cases vs 2640 control subjects) in non-del(5q) MDS cases of European genomic ancestry. Meta-analysis identified 8 MDS-associated loci at 1q31.1 (PLA2G4A), 3p14.1 (FAM19A4), 5q21.3 (EFNA5), 6p21.33, 10q23.1 (GRID1), 12q24.32, 15q26.1, and 20q13.12 (EYA2) that approached genome-wide significance. Gene expression for 5 loci that mapped within or near genes was significantly upregulated in MDS bone marrow cells compared with those of control subjects (P < .01). Higher PLA2G4A expression and lower EYA2 expression were associated with poorer overall survival (P = .039 and P = .037, respectively). Higher PLA2G4A expression is associated with mutations in NRAS (P < .001), RUNX1 (P = .012), ASXL1 (P = .007), and EZH2 (P = .038), all of which are known to contribute to MDS development. EYA2 expression was an independently favorable risk factor irrespective of age, sex, and Revised International Scoring System score (relative risk, 0.67; P = .048). Notably, these genes have regulatory roles in innate immunity, a critical driver of MDS pathogenesis. EYA2 overexpression induced innate immune activation, whereas EYA2 inhibition restored colony-forming potential in primary MDS cells indicative of hematopoietic restoration and possible clinical relevance. In conclusion, among 8 suggestive MDS-associated loci, 5 map to genes upregulated in MDS with functional roles in innate immunity and potential biological relevance to MDS.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Síndromes Mielodisplásicas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Deleção Cromossômica , Cromossomos Humanos Par 5 , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Síndromes Mielodisplásicas/diagnóstico
19.
EBioMedicine ; 48: 178-190, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31594749

RESUMO

BACKGROUND: Melanoma is a heterogeneous tumour, but the impact of this heterogeneity upon therapeutic response is not well understood. METHODS: Single cell mRNA analysis was used to define the transcriptional heterogeneity of melanoma and its dynamic response to BRAF inhibitor therapy and treatment holidays. Discrete transcriptional states were defined in cell lines and melanoma patient specimens that predicted initial sensitivity to BRAF inhibition and the potential for effective re-challenge following resistance. A mathematical model was developed to maintain competition between the drug-sensitive and resistant states, which was validated in vivo. FINDINGS: Our analyses showed melanoma cell lines and patient specimens to be composed of >3 transcriptionally distinct states. The cell state composition was dynamically regulated in response to BRAF inhibitor therapy and drug holidays. Transcriptional state composition predicted for therapy response. The differences in fitness between the different transcriptional states were leveraged to develop a mathematical model that optimized therapy schedules to retain the drug sensitive population. In vivo validation demonstrated that the personalized adaptive dosing schedules outperformed continuous or fixed intermittent BRAF inhibitor schedules. INTERPRETATION: Our study provides the first evidence that transcriptional heterogeneity at the single cell level predicts for initial BRAF inhibitor sensitivity. We further demonstrate that manipulating transcriptional heterogeneity through personalized adaptive therapy schedules can delay the time to resistance. FUNDING: This work was funded by the National Institutes of Health. The funder played no role in assembly of the manuscript.


Assuntos
Melanoma/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Transcrição Gênica , Transcriptoma , Animais , Apoptose/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Modelos Teóricos , Análise de Célula Única , Ensaios Antitumorais Modelo de Xenoenxerto
20.
BMC Cancer ; 19(1): 715, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324168

RESUMO

BACKGROUND: The rapid development of single-cell RNA sequencing (scRNA-seq) provides unprecedented opportunities to study the tumor ecosystem that involves a heterogeneous mixture of cell types. However, the majority of previous and current studies related to translational and molecular oncology have only focused on the bulk tumor and there is a wealth of gene expression data accumulated with matched clinical outcomes. RESULTS: In this paper, we introduce a scheme for characterizing cell compositions from bulk tumor gene expression by integrating signatures learned from scRNA-seq data. We derived the reference expression matrix to each cell type based on cell subpopulations identified in head and neck cancer dataset. Our results suggest that scRNA-Seq-derived reference matrix outperforms the existing gene panel and reference matrix with respect to distinguishing immune cell subtypes. CONCLUSIONS: Findings and resources created from this study enable future and secondary analysis of tumor RNA mixtures in head and neck cancer for a more accurate cellular deconvolution, and can facilitate the profiling of the immune infiltration in other solid tumors due to the expression homogeneity observed in immune cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , RNA-Seq/métodos , Análise de Célula Única/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Linfócitos T Reguladores/imunologia , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Ecossistema , Genes Neoplásicos , Heterogeneidade Genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , RNA Citoplasmático Pequeno/genética , Software , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA