Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
BMC Biol ; 22(1): 191, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218874

RESUMO

BACKGROUND: Brassica napus L. (B. napus) is susceptible to waterlogging stress during different cultivation periods. Therefore, it is crucial to enhance the resistance to waterlogging stress to achieve a high and stable yield of B. napus. RESULTS: Here we observed significant differences in the responses of two B. napus varieties in root under waterlogging stress. The sensitive variety (23651) exhibited a more pronounced and rapid reduction in cell wall thickness and root integrity compared with the tolerant variety (Santana) under waterlogging stress. By module clustering analysis based on transcriptome data, we identified that cell wall polysaccharide metabolism responded to waterlogging stress in root. It was found that pectin content was significantly reduced in the sensitive variety compared with the tolerant variety. Furthermore, transcriptome analysis revealed that the expression of two homologous genes encoding polygalacturonase-inhibiting protein 2 (PGIP2), involved in polysaccharide metabolic pathways, was highly upregulated in root of the tolerant variety under waterlogging stress. BnaPGIP2s probably confer waterlogging resistance by inhibiting the activity of polygalacturonases (PGs), which in turn reduces the degradation of the pectin backbone polygalacturonic acid. CONCLUSIONS: Our findings demonstrate that cell wall polysaccharides in root plays a vital role in response to the waterlogging stress and provide a theoretical foundation for breeding waterlogging resistance in B. napus varieties.


Assuntos
Brassica napus , Parede Celular , Raízes de Plantas , Polissacarídeos , Estresse Fisiológico , Brassica napus/fisiologia , Brassica napus/genética , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Raízes de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pectinas/metabolismo , Água/metabolismo
2.
Mediators Inflamm ; 2024: 9977750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262416

RESUMO

Background: The chronic inflammatory immune response is a significant factor in the pathogenesis of benign gynecological diseases. The systemic immunoinflammatory index (SII) and the platelet-to-lymphocyte ratio (PLR) are commonly available biomarkers of inflammation. However, evidence of the relationship between SII and PLR in patients with adenomyosis is limited. This study aimed to investigate the relationship between SII and PLR in patients with adenomyosis. Methods: This cross-sectional study included 483 patients with adenomyosis who were first diagnosed at our institution between January 2019 and December 2021. Basic patient clinical information and inflammatory factors were collected for univariate analysis, smoothed curve fitting, and multivariate segmented linear regression. Results: The results of the univariate analysis showed a significant positive correlation between PLR levels and SII (P < 0.001). In addition, a nonlinear relationship between PLR and SII was tested using a smoothed curve fit after adjusting for potential confounders. Multiple segmented linear regression models showed a significant relationship between SII and PLR in both SII < 1,326.47 (ß 0.14, 95% CI: 0.12, 0.16; P < 0.0001) and >1,326.47 (ß 0.02, 95% CI: -0.01, 0.05; P = 0.2461). Conclusions: In conclusion, this study showed a nonlinear relationship between SII and PLR in patients with uterine adenomyosis. An increase in serum PLR levels correlates with an increase in SII before SII levels reach an inflection point.


Assuntos
Adenomiose , Plaquetas , Linfócitos , Humanos , Adenomiose/sangue , Feminino , Estudos Transversais , Adulto , Pessoa de Meia-Idade , Inflamação/sangue , Modelos Lineares , Biomarcadores/sangue , Contagem de Plaquetas
3.
J Biol Chem ; : 107789, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303916

RESUMO

Esophageal cancer is mainly divided into esophageal adenocarcinoma (EADC) and esophageal squamous cell carcinoma (ESCC). China is one of the high-incidence areas of esophageal cancer, of which about 90% are ESCC. The deubiquitinase USP38 has been reported to play significant roles in several biological processes, including inflammatory responses, antiviral infection, cell proliferation, migration, invasion, DNA damage repair, and chemotherapy resistance. However, the role and mechanisms of USP38 in ESCC development remain still unclear. Furthermore, although many substrates of USP38 have been identified, few upstream regulatory factors of USP38 have been identified. In this study, we found that USP38 was significantly upregulated in esophageal cancer tissues. Knockdown of USP38 inhibited ESCC growth. USP38 stabilized itself through auto-deubiquitylation. In addition, we demonstrate that ADAR could enhance the stability of USP38 protein and facilitate USP38 auto-deubiquitylation by interacting with USP38 in an RNA editing-independent manner. ADAR inhibition of ESCC cell proliferation depended on USP38. In summary, these results highlight that the potential of targeting the ADAR-USP38 axis for ESCC treatment.

4.
Curr Issues Mol Biol ; 46(9): 9449-9462, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329912

RESUMO

Liquidambar formosana Hance is renowned for its rich leaf color and possesses notable advantages, such as robust adaptability, strong resistance to diseases and pests, and rapid growth, making it a preferred choice for urban greening and carbon sequestration forest initiatives. The completion of whole-genome sequencing of L. formosana has spurred an increased interest in exploring the molecular mechanisms underlying seasonal changes in leaf color, marking a significant focus in L. formosana breeding research. However, there is currently a lack of stable reference genes suitable for analyzing the expression patterns of functional genes in L. formosana exhibiting varying leaf colors. This study selected five L. formosana varieties with significant differences in leaf colors. Through the RT-qPCR analysis, and evaluation using BestKeeper, geNorm, NormFinder, Delta Ct, and RefFinder, the expression stability of 14 candidate reference genes was examined. Consequently, two reference genes (LifEF1-α and LifACT) with stable expression, suitable for RT-qPCR of L. formosana with diverse leaf colors, were identified. The stability of these selected reference genes was further validated by examining the LifbHLH137 gene, which promoted the biosynthesis of anthocyanins. This advancement facilitated molecular biology and genetic breeding investigations of L. formosana, providing essential data for the precise quantification of functional genes associated with leaf color variation.

5.
Parasit Vectors ; 17(1): 403, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334398

RESUMO

BACKGROUND: Insecticide resistance poses a significant challenge in the implementation of vector-borne disease control strategies. We have assessed the resistance levels of Aedes albopictus to deltamethrin and pyriproxyfen (PPF) in Fujian Province (China) and investigated the correlation between these resistance levels and mutations in the voltage-gated sodium channel (VGSC). METHODS: The WHO bioassay protocol was used to evaluate the resistance coefficient of Ae. albopictus to deltamethrin and PPF, comparing a susceptible population from the Foshan (FS) area with wild populations from the Sanming (SM), Quanzhou (QZ), Zhangzhou (ZZ), Putian (PT) and Fuzhou (FZ) areas in Fujian Province. Genomic DNA was analyzed by PCR and sequencing to detect knockdown resistance (kdr) in the VGSC, specifically at the pyrethroid resistance alleles V1016V, I1532I and F1534F. Molecular docking was also performed to analyze the binding interactions of PPF and its metabolite 4'-OH-PPF to cytochrome P450 (CYP) 2C19, 2C9 and 3A4 and Ae. albopictus methoprene-tolerant receptors (AeMet), respectively. RESULTS: The analysis of resistance to deltamethrin and PPF among Ae. albopictus populations from the various regions revealed that except for the sensitive population in FS and the SM population, the remaining four regional populations demonstrated resistance levels ranging from 4.31- to 18.87-fold for deltamethrin and from 2.85- to 3.62-fold for PPF. Specifically, the FZ and PT populations exhibited high resistance to deltamethrin, whereas the ZZ and QZ populations approached moderate resistance levels. Also, the resistance of the FZ, PT and ZZ populations to PPF increased slowly but consistently with the increasing trend of deltamethrin resistance. Genomic analysis identified multiple non-synonymous mutations within the VGSC gene; the F1534S and F1534L mutations showed significant resistance to deltamethrin in Ae. albopictus. Molecular docking results revealed that PPF and its metabolite 4'-OH-PPF bind to the Ae. albopictus AeMet receptor and CYP2C19. CONCLUSIONS: The wild Ae. albopictus populations of Fujian Province showed varying degrees of resistance to deltamethrin and PPF and a trend of cross-resistance to deltamethrin and PPF. Increased vigilance is needed for potential higher levels of cross-resistance, especially in the PT and FZ regions.


Assuntos
Aedes , Resistência a Inseticidas , Inseticidas , Simulação de Acoplamento Molecular , Nitrilas , Piretrinas , Piridinas , Canais de Sódio Disparados por Voltagem , Animais , Piretrinas/farmacologia , Nitrilas/farmacologia , Aedes/genética , Aedes/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo , China , Piridinas/farmacologia , Mutação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Feminino , Bioensaio
6.
Am J Hypertens ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136164

RESUMO

BACKGROUND: Elevated soluble stimulating factor 2 (sST2) level is observed in cardiovascular diseases, such as heart failure and acute coronary syndrome, which reflects myocardial fibrosis and hypertrophy, indicating adverse clinical outcomes. However, the association between sST2 and hypertensive heart disease are less understood. This study aimed to determine the relationship of sST2 with left ventricular hypertrophy (LVH) and geometric remodeling in essential hypertension (EH). METHODS: We enrolled 483 patients (aged 18-80 years; 51.35% female). sST2 measurements and echocardiographic analyses were performed. RESULTS: Stepwise multiple linear regression analysis showed significant associations between sST2, left ventricular (LV) mass, and LV mass index. The prevalence of LVH and concentric hypertrophy (CH) increased with higher sST2 grade levels (p for trend<0.05). Logistic regression analysis suggested that the highest tertile of sST2 was significantly associated with increased LVH risk, compared with the lowest tertile (multivariate-adjusted odds ratio [OR] of highest group: 6.61; p<0.001). Similar results were observed in the left ventricular geometric remodeling; the highest tertile of sST2 was significantly associated with increased CH risk (multivariate-adjusted OR of highest group: 5.80; p<0.001). The receiver operating characteristic analysis results revealed that sST2 had potential predictive value for LVH (area under the curve [AUC]: 0.752, 95% confidence interval [CI]: 0.704-0.800) and CH (AUC: 0.750, 95% CI: 0.699-0.802) in patients with EH. CONCLUSIONS: High sST2 level is strongly related to LVH and CH in patients with EH and can be used as a biomarker for the diagnosis and risk assessment of hypertensive heart disease.

7.
Clin Genet ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168815

RESUMO

Plectin is a cytoskeletal linker of intermediate filaments, encoded by the PLEC gene. Recently, plectin mutations have been identified in a pair of siblings with progressive familial intrahepatic cholestasis. Here, we reported two unrelated infants with plectinopathy causing cholestatic jaundice with novel variants in the PLEC gene. Trio exome sequencing identified compound heterozygous variants in the PLEC gene for each patient: c.71-11768C>T and c.4331G>T (p.Arg1444Leu) in Patient 1, and c.592C>T (p.Arg198Trp) and c.4322G>A (p.Arg1441His) in Patient 2. Immunofluorescence staining of liver samples from both patients revealed scattered signals of plectin in the cytoplasm of hepatocytes and reduced colocalization of plectin and cytokeratin 8. This study not only underscores the involvement of plectin in cholestasis but also highlights the utility of exome sequencing as a powerful diagnostic tool in identifying genetic underpinnings of infantile cholestasis.

8.
J Agric Food Chem ; 72(34): 18930-18941, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39146439

RESUMO

High-fat diet (HFD) feeding is known to cause intestinal barrier disruption, thereby triggering severe intestinal inflammatory disease. Indole-3-aldehyde (IAld) has emerged as a potential candidate for mitigating inflammatory responses and maintaining intestinal homeostasis. However, the role of IAld in the HFD-related intestinal disruption remains unclear. In this study, 48 7 week-old male C57BL/6J mice were assigned to four groups: the normal chow diet (NCD) group received a NCD; the HFD group was fed an HFD; the HFD + IAld200 group was supplemented with 200 mg/kg IAld in the HFD; and the HFD + IAld600 group was supplemented with 600 mg/kg IAld in the HFD. The results showed that dietary IAld supplementation ameliorated fat accumulation and metabolic disorders, which are associated with reduced intestinal permeability. This reduction potentially led to decreased systemic inflammation and enhanced intestinal barrier function in HFD-fed mice. Furthermore, we found that IAld promoted intestinal stem cell (ISC) proliferation by activating aryl hydrocarbon receptors (AHRs) in vivo and ex vivo. These findings suggest that IAld restores the HFD-induced intestinal barrier disruption by promoting AHR-mediated ISC proliferation.


Assuntos
Proliferação de Células , Dieta Hiperlipídica , Indóis , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Células-Tronco , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Indóis/farmacologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Permeabilidade
9.
ACS Appl Mater Interfaces ; 16(28): 36247-36254, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38963922

RESUMO

Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating C═O bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C-Cx) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C-C0.5 catalyst achieves CO2 reduction reaction rates of 12000-15000 µmol·g-1·h-1 to CO and 1000-3200 µmol·g-1·h-1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.

10.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063157

RESUMO

Cervical cancer ranks as the fourth most prevalent form of cancer and is a significant contributor to female mortality on a global scale. Pitavastatin is an anti-hyperlipidemic medication and has been demonstrated to exert anticancer and anti-inflammatory effects. Thus, the purpose of this study was to evaluate the anticancer effect of pitavastatin on cervical cancer and the underlying molecular mechanisms involved. The results showed that pitavastatin significantly inhibited cell viability by targeting cell-cycle arrest and apoptosis in Ca Ski, HeLa and C-33 A cells. Pitavastatin caused sub-G1- and G0/G1-phase arrest in Ca Ski and HeLa cells and sub-G1- and G2/M-phase arrest in C-33 A cells. Moreover, pitavastatin induced apoptosis via the activation of poly-ADP-ribose polymerase (PARP), Bax and cleaved caspase 3; inactivated the expression of Bcl-2; and increased mitochondrial membrane depolarization. Furthermore, pitavastatin induced apoptosis and slowed the migration of all three cervical cell lines, mediated by the PI3K/AKT and MAPK (JNK, p38 and ERK1/2) pathways. Pitavastatin markedly inhibited tumor growth in vivo in a cancer cell-originated xenograft mouse model. Overall, our results identified pitavastatin as an anticancer agent for cervical cancer, which might be expanded to clinical use in the future.


Assuntos
Apoptose , Quinolinas , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Quinolinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Células HeLa , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos BALB C , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
11.
Materials (Basel) ; 17(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38930204

RESUMO

Ferroelectric materials, with their spontaneous electric polarization, are renewing research enthusiasm for their deployment in high-performance micro/nano energy harvesting devices such as triboelectric nanogenerators (TENGs). Here, the introduction of ferroelectric materials into the triboelectric interface not only significantly enhances the energy harvesting efficiency, but also drives TENGs into the era of intelligence and integration. The primary objective of the following paper is to tackle the newest innovations in TENGs based on ferroelectric materials. For this purpose, we begin with discussing the fundamental idea and then introduce the current progress with TENGs that are built on the base of ferroelectric materials. Various strategies, such as surface engineering, either in the micro or nano scale, are discussed, along with the environmental factors. Although our focus is on the enhancement of energy harvesting efficiency and output power density by utilizing ferroelectric materials, we also highlight their incorporation in self-powered electronics and sensing systems, where we analyze the most favorable and currently accessible options in attaining device intelligence and multifunctionality. Finally, we present a detailed outlook on TENGs that are based on ferroelectric materials.

12.
Chem Commun (Camb) ; 60(56): 7224-7227, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38912646

RESUMO

In this work, experimental and theoretical analyses reveal that different types of Cu wires significantly change the adsorption properties of reactant molecules and the benzyl alcohol oxidation reaction performance. In particular, CuO nanowires in situ grown on Cu foam exhibit the best performance with a low potential of 1.39 V at a current density of 200 mA cm-2, high selectivity to benzoic acid production, and good operational stability.

13.
J Cell Biochem ; 125(7): e30609, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38860429

RESUMO

Keloid is a typical fibrotic and inflammatory skin disease with unclear mechanisms and few therapeutic targets. In this study, we found that BMP1 was significantly increased in a collagen high-expressing subtype of fibroblast by reanalyzing a public single-cell RNA-sequence data set of keloid. The number of BMP1-positive fibroblast cells was increased in keloid fibrotic loci. Increased levels of BMP1 were further validated in the skin tissues and fibroblasts from keloid patients. Additionally, a positive correlation between BMP1 and the Keloid Area and Severity Index was found in keloid patients. In vitro analysis revealed collagen production, the phosphorylation levels of p65, and the IL-1ß secretion decreased in BMP1 interfered keloid fibroblasts. Besides, the knockdown of BMP1 inhibited the growth and migration of keloid fibroblast cells. Mechanistically, BMP1 inhibition downregulated the noncanonical TGF-ß pathways, including p-p38 and p-ERK1/2 signaling. Furthermore, we found the delivery of BMP1 siRNAs could significantly alleviate keloid in human keloid-bearing nude mice. Collectively, our results indicated that BMP1 exhibited various pathogenic effects on keloids as promoting cell proliferation, migration, inflammation, and ECM deposition of fibroblast cells by regulating the noncanonical TGF-ß/p38 MAPK, and TGF-ß/ERK pathways. BMP1-lowing strategies may appear as a potential new therapeutic target for keloid.


Assuntos
Proteína Morfogenética Óssea 1 , Fibroblastos , Inflamação , Queloide , Queloide/metabolismo , Queloide/patologia , Queloide/genética , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína Morfogenética Óssea 1/metabolismo , Proteína Morfogenética Óssea 1/genética , Animais , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Masculino , Camundongos Nus , Proliferação de Células , Feminino , Movimento Celular , Fibrose , Adulto , Fator de Crescimento Transformador beta/metabolismo , Sistema de Sinalização das MAP Quinases
14.
Nat Commun ; 15(1): 5047, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871750

RESUMO

Direct solar-to-hydrogen conversion from pure water using all-organic heterogeneous catalysts remains elusive. The challenges are twofold: (i) full-band low-frequent photons in the solar spectrum cannot be harnessed into a unified S1 excited state for water-splitting based on the common Kasha-allowed S0 → S1 excitation; (ii) the H+ → H2 evolution suffers the high overpotential on pristine organic surfaces. Here, we report an organic molecular crystal nanobelt through the self-assembly of spin-one open-shell perylene diimide diradical anions (:PDI2-) and their tautomeric spin-zero closed-shell quinoid isomers (PDI2-). The self-assembled :PDI2-/PDI2- crystal nanobelt alters the spin-dependent excitation evolution, leading to spin-allowed S0S1 → 1(TT) → T1 + T1 singlet fission under visible-light (420 nm~700 nm) and a spin-forbidden S0 → T1 transition under near-infrared (700 nm~1100 nm) within spin-hybrid chromophores. With a triplet-triplet annihilation upconversion, a newly formed S1 excited state on the diradical-quinoid hybrid induces the H+ reduction through a favorable hydrophilic diradical-mediated electron transfer, which enables simultaneous H2 and O2 production from pure water with an average apparent quantum yield over 1.5% under the visible to near-infrared solar spectrum.

15.
Org Lett ; 26(19): 4082-4087, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38717253

RESUMO

DNA-encoded library (DEL) technologies enable the fast exploration of gigantic chemical space to identify ligands for the target protein of interest and have become a powerful hit finding tool for drug discovery projects. However, amenable DEL chemistry is restricted to a handful of reactions, limiting the creativity of drug hunters. Here, we describe a new on-DNA synthetic pathway to access sulfides and sulfoximines. These moieties, usually contemplated as challenging to achieve through alkylation and oxidation, can now be leveraged in routine DEL selection campaigns.


Assuntos
DNA , Sulfetos , DNA/química , Sulfetos/química , Sulfetos/síntese química , Estrutura Molecular , Iminas/química , Oxirredução , Alquilação , Descoberta de Drogas
16.
Adv Mater ; 36(30): e2402322, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718226

RESUMO

Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain challenging in overcoming the current limitations of chemoimmunotherapy. An antitumor chemoimmunotherapy system comprising bioorthogonal reaction-ready group tetrazine (TZ) modified with an anti-PD-L1 antibody (αPD-L1TZ) and TZ-activatable prodrug vinyl ether-doxorubicin (DOX-VE) for self-reinforced anti-tumor chemoimmunotherapy is proposed. The αPD-L1TZ effectively disrupts the PD-L1/PD-1 interaction and activates the DOX prodrug in situ through the bioorthogonal click reaction of TZ and VE. Conversely, the activated DOX upregulates PD-L1 on the surface of tumor cells, facilitating tumor accumulation of αPD-L1TZ and enhancing DOX-VE activation. Furthermore, the activated DOX-induced immunogenic cell death of tumor cells, substantially improving the response efficiency of αPD-L1 in an immune-suppressive tumor microenvironment. Thus, PD-L1 blocking and bioorthogonal in situ prodrug activation synergistically enhance the antitumor efficacy of the chemoimmunotherapy system. Therefore, the system significantly enhances αPD-L1 tumor accumulation and prodrug activation and induces a robust immunological memory effect to prevent tumor recurrence and metastasis. Thus, a feasible chemoimmunotherapy combination regimen is presented.


Assuntos
Antígeno B7-H1 , Doxorrubicina , Imunoterapia , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Imunoterapia/métodos , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
17.
J Cancer ; 15(9): 2712-2730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577591

RESUMO

Background: ASB6, an E3 ubiquitin ligase, mediates the proteasomal degradation of its substrate proteins via the ubiquitin-proteasome pathway. ASB6 has been reported to play significant roles in several biological processes, including tumor stemness and endoplasmic reticulum stress. However, the underlying role and mechanism of ASB6 in colorectal cancer, particularly its association with immune infiltration levels and its prognostic significance, remain to be fully elucidated. Methods: We identified key prognostic genes in CRC patients through LASSO-penalized Cox regression, Univariate and Multivariate Cox regression analyses. Subsequently, we comprehensively analyzed the prognostic value of hub genes and constructed a prognostic nomogram. Finally, we identified ASB6 interacting proteins through immunoprecipitation-mass spectrometry (IP-MS) and constructed protein-protein interaction (PPI) networks and performed pathway enrichment analysis to explore the potential mechanisms of ASB6. Meanwhile, we evaluated the functions of ASB6 in CRC cells through in vitro cell experiments. Results: We identified ASB6 as a hub gene in CRC. ASB6 was highly expressed in CRC, and patients with high ASB6 expression had worse Disease-Free Interval (DFI), Disease-Specific Survival (DSS), Overall Survival (OS), and Progression-Free Interval (PFI). Correlation analysis showed that ASB6 expression were positively correlated with lymph node invasion and distal metastasis. Overexpression of ASB6 enhanced the migration ability of CRC cells. Multivariate Cox regression analysis revealed that ASB6 was an independent prognostic factor for OS and DSS in CRC. The nomogram model constructed based on multivariate analysis results had good predictive effects, with C-indexes of 0.811 and 0.934 for OS and DSS, respectively. Furthermore, analysis of immune infiltration levels showed that ASB6 expression were positively correlated with M2-type macrophage infiltration levels in CRC, and patients with high levels of both ASB6 and M2-type macrophages had a worse prognosis. Furthermore, pathway enrichment analysis of ASB6 interacting proteins identified by IP-MS suggested that ASB6 may play a crucial role through the response to unfolded protein pathway and protein processing in the endoplasmic reticulum pathway. Conclusions: ASB6 is significantly upregulated in CRC tissues and is a risk factor for prognosis in CRC patients. ASB6 enhances the migration ability of CRC cells. Therefore, ASB6 may be an independent prognostic biomarker and potential therapeutic target for CRC patients.

18.
Front Cell Infect Microbiol ; 14: 1351540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562966

RESUMO

Relevant studies increasingly indicate that female reproductive health is confronted with substantial challenges. Emerging research has revealed that the microbiome interacts with the anatomy, histology, and immunity of the female reproductive tract, which are the cornerstone of maintaining female reproductive health and preventing adverse pregnancy outcomes. Currently, the precise mechanisms underlying their interaction and impact on physiological functions of the reproductive tract remain elusive, constituting a prominent area of investigation within the field of female reproductive tract microecology. From this new perspective, we explore the mechanisms of interactions between the microbiome and the anatomy, histology, and immunity of the female reproductive tract, factors that affect the composition of the microbiome in the female reproductive tract, as well as personalized medicine approaches in managing female reproductive tract health based on the microbiome. This study highlights the pivotal role of the female reproductive tract microbiome in maintaining reproductive health and influencing the occurrence of reproductive tract diseases. These findings support the exploration of innovative approaches for the prevention, monitoring and treatment of female reproductive tract diseases based on the microbiome.


Assuntos
Microbiota , Saúde Reprodutiva , Gravidez , Feminino , Humanos , Genitália Feminina , Microbiota/fisiologia
19.
Lipids Health Dis ; 23(1): 98, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570797

RESUMO

Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Análise da Expressão Gênica de Célula Única , Metabolismo dos Lipídeos/genética , Células Endoteliais/metabolismo , Fosfolipídeos/metabolismo , Colesterol/metabolismo , Fosfatidilcolinas
20.
Adv Sci (Weinh) ; 11(22): e2400713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593402

RESUMO

Osteoarthritis (OA) is a chronic inflammatory disease characterized by cartilage destruction, synovitis, and osteophyte formation. Disease-modifying treatments for OA are currently lacking. Because inflammation mediated by an imbalance of M1/M2 macrophages in the synovial cavities contributes to OA progression, regulating the M1 to M2 polarization of macrophages can be a potential therapeutic strategy. Basing on the inherent immune mechanism and pathological environment of OA, an immunoglobulin G-conjugated bilirubin/JPH203 self-assembled nanoparticle (IgG/BRJ) is developed, and its therapeutic potential for OA is evaluated. After intra-articular administration, IgG conjugation facilitates the recognition and engulfment of nanoparticles by the M1 macrophages. The internalized nanoparticles disassemble in response to the increased oxidative stress, and the released bilirubin (BR) and JPH203 scavenge reactive oxygen species (ROS), inhibit the nuclear factor kappa-B pathway, and suppress the activated mammalian target of rapamycin pathway, result in the repolarization of macrophages and enhance M2/M1 ratios. Suppression of the inflammatory environment by IgG/BRJ promotes cartilage protection and repair in an OA rat model, thereby improving therapeutic outcomes. This strategy of opsonization involving M1 macrophages to engulf carrier-free BR/JPH203 nanoparticles to suppress inflammation for OA therapy holds great potential for OA intervention and treatment.


Assuntos
Bilirrubina , Modelos Animais de Doenças , Inflamação , Macrófagos , Nanopartículas , Osteoartrite , Animais , Osteoartrite/imunologia , Osteoartrite/tratamento farmacológico , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ratos , Inflamação/imunologia , Bilirrubina/farmacologia , Bilirrubina/metabolismo , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA