Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Med Virol ; 95(12): e29254, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38018242

RESUMO

Hepatitis B virus (HBV) infection remains a significant public health burden worldwide. The persistence of covalently closed circular DNA (cccDNA) within the nucleus of infected hepatocytes is responsible for the failure of antiviral treatments. The ubiquitin proteasome system (UPS) has emerged as a promising antiviral target, as it can regulate HBV replication by promoting critical protein degradation in steps of viral life cycle. Speckle-type POZ protein (SPOP) is a critical adaptor for Cul3-RBX1 E3 ubiquitin ligase complex, but the effect of SPOP on HBV replication is less known. Here, we identified SPOP as a novel host antiviral factor against HBV infection. SPOP overexpression significantly inhibited the transcriptional activity of HBV cccDNA without affecting cccDNA level in HBV-infected HepG2-NTCP and primary human hepatocyte cells. Mechanism studies showed that SPOP interacted with hepatocyte nuclear factor 1α (HNF1α), and induced HNF1α degradation through host UPS pathway. Moreover, the antiviral role of SPOP was also confirmed in vivo. Together, our findings reveal that SPOP is a novel host factor which inhibits HBV transcription and replication by ubiquitination and degradation of HNF1α, providing a potential therapeutic strategy for the treatment of HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Antivirais/farmacologia , DNA Circular , DNA Viral/genética , Hepatite B/genética , Vírus da Hepatite B/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Ubiquitinação , Replicação Viral
2.
Biosens Bioelectron ; 222: 114999, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521206

RESUMO

Electronic textiles are fundamentally changing the way we live. However, the inability to effectively recycle them is a considerable burden to the environment. In this study, we developed a cotton fiber-based piezoresistive textile (CF p-textile) for biomonitoring which is biocompatible, biodegradable, and environmentally friendly. These CF p-textiles were fabricated using a scalable dip-coating method to adhere MXene flakes to porous cotton cellulose fibers. The adhesion is made stronger by strong hydrogen bonding between MXene flakes and hierarchically porous cotton cellulose fibers. This cotton-fiber system provides a high sensitivity of 17.73 kPa-1 in a wide pressure range (100 Pa-30 kPa), a 2 Pa subtle pressure detection limit, fast response/recovery time (80/40 ms), and good cycle stability (over 5, 000 cycles). With its compelling sensing performance, the CF p-textile can detect various human biomechanical activities, including pulsation, muscle movement, and swallowing, while still being comfortable to wear. Moreover, the cotton cellulose is decomposed into low-molecular weight cellulose or glucose as a result of the 1,4-glycosidic bond breakage when exposed to acid or during natural degradation, which allows the electronic textile to be biodegradable. This work offers an ecologically-benign, cost-effective and facile approach to fabricating high-performance wearable bioelectronics.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Fibra de Algodão , Monitoramento Biológico , Têxteis , Celulose
3.
Virol Sin ; 37(6): 894-903, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35985475

RESUMO

Casein kinase 1α (CK1α) mediates the phosphorylation and degradation of interferon-α/ß receptor 1 (IFNAR1) in response to viral infection. However, how CK1α regulates hepatitis B virus (HBV) replication and the anti-HBV effects of IFN-α are less reported. Here we show that CK1α can interact with IFNAR1 in hepatoma carcinoma cells and increased the abundance of IFNAR1 by reducing the ubiquitination levels in the presence of HBV. Furthermore, CK1α promotes the IFN-α triggered JAK-STAT signaling pathway and consequently enhances the antiviral effects of IFN-α against HBV replication. Our results collectively provide evidence that CK1α positively regulates the anti-HBV activity of IFN-α in hepatoma carcinoma cells, which would be a promising therapeutic target to improve the effectiveness of IFN-α therapy to cure CHB.


Assuntos
Carcinoma Hepatocelular , Caseína Quinase Ialfa , Interferon Tipo I , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/fisiologia , Linhagem Celular , Interferon Tipo I/metabolismo , Interferon-alfa/farmacologia , Receptor de Interferon alfa e beta
4.
J Virol Methods ; 299: 114334, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688781

RESUMO

The quantification of intrahepatic covalently closed circular DNA (cccDNA) is important for assessing the efficiency of anti-HBV therapy. Exonuclease treatment is essential before real-time quantitative PCR (qPCR) or droplet digital PCR (ddPCR) measurement to improve the specificity of cccDNA quantification. In this research, we compared the limit of detection (LOD) of qPCR and ddPCR and evaluated the digestion efficiency of three exonuclease treatments, PSAD, exonuclease III and T5 exonuclease, when measuring cccDNA in cells or clinical samples by ddPCR. We demonstrated that the LOD of ddCPR was 5.9 copies/reaction, which was much lower than that of qPCR (54.9 copies/reaction), indicating that ddPCR is more sensitive than qPCR. Meanwhile, compared to PSAD or Exo III, UNG and T5 exonuclease treatment combined with ddPCR is more effective in detecting intrahepatic cccDNA in clinical samples. Finally, the median intrahepatic cccDNA was 2.6 copies/104 cells in 26 pairs of HCC samples determined by the improved ddPCR method. Therefore, we developed an optimized ddPCR method, which can be used for the absolute quantification of low levels of intrahepatic cccDNA more precisely.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico , DNA Circular/genética , DNA Viral/análise , DNA Viral/genética , Vírus da Hepatite B/genética , Humanos , Fígado , Neoplasias Hepáticas/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos
5.
Oncol Lett ; 21(4): 316, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33692848

RESUMO

Long intergenic non-protein coding RNA 52 (LINC00052) is a non-coding RNA with >200 nucleotides in length, which exerts important effects on several physiological and pathological processes of the human body. Recent studies have demonstrated that LINC00052 plays key roles in the tumorigenesis, progression and metastasis of multiple types of human cancer, including hepatocellular carcinoma, breast cancer, colorectal cancer, cervical carcinoma and gastric cancer. However, the associations between LINC00052 and these tumors remain unclear. The present review summarizes the biological functions of LINC00052 during the pathogenic process of certain tumors, and discusses its potential therapeutic targets.

6.
J Infect Dis ; 222(2): 189-193, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32382737

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel ß-coronavirus, causes severe pneumonia and has spread throughout the globe rapidly. The disease associated with SARS-CoV-2 infection is named coronavirus disease 2019 (COVID-19). To date, real-time reverse-transcription polymerase chain reaction (RT-PCR) is the only test able to confirm this infection. However, the accuracy of RT-PCR depends on several factors; variations in these factors might significantly lower the sensitivity of detection. METHODS: In this study, we developed a peptide-based luminescent immunoassay that detected immunoglobulin (Ig)G and IgM. The assay cutoff value was determined by evaluating the sera from healthy and infected patients for pathogens other than SARS-CoV-2. RESULTS: To evaluate assay performance, we detected IgG and IgM in the sera from confirmed patients. The positive rate of IgG and IgM was 71.4% and 57.2%, respectively. CONCLUSIONS: Therefore, combining our immunoassay with real-time RT-PCR might enhance the diagnostic accuracy of COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Técnicas Imunoenzimáticas/métodos , Pneumonia Viral/diagnóstico , Testes Sorológicos/métodos , Adulto , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Medições Luminescentes , Masculino , Pessoa de Meia-Idade , Pandemias , Peptídeos/imunologia , Pneumonia Viral/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Sensibilidade e Especificidade , Proteínas Virais/imunologia
7.
Emerg Microbes Infect ; 9(1): 366-377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32056513

RESUMO

Hepatitis B virus (HBV) is a partially double-stranded DNA virus that replicates by reverse transcription. We previously demonstrated that the host restriction factor-APOBEC3B (A3B) inhibited HBV replication which was dependent on its deaminase activity during reverse transcription. However, the host factors involved in the process of regulating the anti-HBV function of A3B are less known. In this research, to obtain a comprehensive understanding of the interaction networks of A3B, we conducted coimmunoprecipitation and mass spectrometry to identify A3B-interacting proteins in the presence of HBV. By this approach, we determined that DExD/H-box helicase 9 (DHX9) suppressed the anti-HBV effect of A3B, and this suppression was dependent on their interaction. Although DHX9 did not affect the deamination activity of A3B in vitro assay or the viral DNA editing of A3B in HepG2-NTCP cells that support HBV infection, it inhibited the binding of A3B with pgRNA. These data suggest that DHX9 can interact with A3B and attenuate the anti-HBV efficacy of A3B.Abbreviations: 3D-PCR: differential DNA denaturation PCR; APOBEC3: apolipoprotein B mRNA-editing catalytic polypeptide 3; cccDNA: covalently closed circular DNA; co-IP: coimmunoprecipitation; DDX: DExD-box RNA helicases; HBc: HBV core protein; HBV: hepatitis B virus; HepAD38: HepG2 cell line stably transfected with HBV DNA; HepG2-NTCP: HepG2 cell line stably transfected with Na+/taurocholate cotransporter polypeptide; Huh7: human hepatoma cell line; pgRNA: pregenomic RNA; PPI: protein-protein interactions; RC DNA: relaxed circular DNA.


Assuntos
Citidina Desaminase/metabolismo , RNA Helicases DEAD-box/metabolismo , Hepatite B/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas de Neoplasias/metabolismo , Células HEK293 , Células Hep G2 , Vírus da Hepatite B/fisiologia , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Viral , Replicação Viral
8.
Cell Microbiol ; 22(3): e13148, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31829498

RESUMO

Hepatitis B virus (HBV) infection is a major cause of acute and chronic liver diseases. During the HBV life cycle, HBV hijacks various host factors to assist viral replication. In this research, we find that the HBV regulatory protein X (HBx) can induce the upregulation of DExH-box RNA helicase 9 (DHX9) expression by repressing proteasome-dependent degradation mediated by MDM2. Furthermore, we demonstrate that DHX9 contributes to viral DNA replication in dependence on its helicase activity and nuclear localization. In addition, the promotion of viral DNA replication by DHX9 is dependent on its interaction with Nup98. Our findings reveal that HBx-mediated DHX9 upregulation is essential for HBV DNA replication.


Assuntos
RNA Helicases DEAD-box/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transativadores/fisiologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Animais , Linhagem Celular , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/genética , Replicação do DNA , DNA Viral , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Hepatite B/genética , Hepatite B/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Regulação para Cima , Replicação Viral
9.
FEBS Lett ; 592(11): 1893-1904, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29782647

RESUMO

SAMHD1 inhibits Hepatitis B virus (HBV) replication by reducing the intracellular dNTP levels. However, how SAMHD1 phosphorylation is regulated to abrogate its restriction of HBV replication in hepatoma cells is poorly understood. Here, we show that HBV replication and SAMHD1 phosphorylation levels are significantly reduced by knocking down cyclin-dependent kinase (CDK) 2 expression or in the presence of a CDK2 inhibitor. SAMHD1 binds to CDK2 in hepatocarcinoma cells, and this interaction does not require the HBV core protein. Furthermore, cyclin E2 participates in regulating viral replication through the CDK2/SAMHD1 phosphorylation pathway in an HBV infection system. Collectively, our results provide evidence that CDK2 has a greater role in regulating SAMHD1 phosphorylation and HBV replication than CDK1 or CDK6.


Assuntos
Carcinoma Hepatocelular/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Replicação Viral/fisiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Quinase 2 Dependente de Ciclina/genética , Ciclinas/genética , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Proteínas de Neoplasias/genética , Fosforilação/genética , Proteína 1 com Domínio SAM e Domínio HD/genética
10.
Antiviral Res ; 149: 16-25, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129707

RESUMO

Hepatitis B virus is a partially double-stranded DNA virus that replicates by reverse transcription, which occurs within viral core particles in the cytoplasm. The cytidine deaminase APOBEC3B is a cellular restriction factor for HBV. Recently, it was reported that APOBEC3B can edit HBV cccDNA in the nucleus, causing its degradation. However, whether and how it can edit HBV core-associated DNAs during reverse transcription is unclear. Our studies to address this question revealed the following: First, silencing endogenous APOBEC3B in an HBV infection system lead to upregulation of HBV replication. Second, APOBEC3B can inhibit replication of HBV isolates from genotypes (gt) A, B, C, and D as determined by employing transfection of plasmids expressing isolates from four different HBV genotypes. For HBV inhibition, APOBEC3B-mediated inhibition of replication primarily depends on the C-terminal active site of APOBEC3B. In addition, employing the HBV RNaseH-deficient D702A mutant and a polymerase-deficient YMHA mutant, we demonstrated that APOBEC3B can edit both the HBV minus- and plus-strand DNAs, but not the pregenomic RNA in core particles. Furthermore, we found by co-immunoprecipitation assays that APOBEC3B can interact with HBV core protein in an RNA-dependent manner. Our results provide evidence that APOBEC3B can interact with HBV core protein and edit HBV DNAs during reverse transcription. These data suggest that APOBEC3B exerts multifaceted antiviral effects against HBV.


Assuntos
Citidina Desaminase/metabolismo , Replicação do DNA , DNA Viral , Edição de Genes , Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Hepatite B/virologia , Antígenos de Histocompatibilidade Menor/metabolismo , Replicação Viral , Linhagem Celular , Citidina Desaminase/química , Citidina Desaminase/genética , Expressão Gênica , Inativação Gênica , Genótipo , Interações Hospedeiro-Patógeno , Humanos , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/genética , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteínas do Core Viral/metabolismo
11.
PLoS One ; 11(6): e0157708, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27310677

RESUMO

Chronic Hepatitis B Virus (HBV) infections can progresses to liver cirrhosis and hepatocellular carcinoma (HCC). The HBV covalently-closed circular DNA cccDNA is a key to HBV persistence, and its degradation can be induced by the cellular deaminase APOBEC3. This study aimed to measure the distribution of intrahepatic cccDNA levels and evaluate the association between levels of cccDNA and APOBEC3 in HCC patients. Among 49 HCC patients, 35 matched cancerous and contiguous noncancerous liver tissues had detectable cccDNA, and the median intrahepatic cccDNA in the cancerous tissues (CT) was significantly lower than in the contiguous noncancerous tissues (CNCT) (p = 0.0033). RCA (rolling circle amplification), followed by 3D-PCR identified positive amplification in 27 matched HCC patients. Sequence analysis indicated G to A mutations accumulated to higher levels in CT samples compared to CNCT samples, and the dinucleotide context showed preferred editing in the GpA context. Among 7 APOBEC3 genes, APOBEC3B was the only one up-regulated in cancerous tissues both at the transcriptional and protein levels (p < 0.05). This implies APOBEC3B may contribute to cccDNA editing and subsequent degradation in cancerous tissues.


Assuntos
Carcinoma Hepatocelular/virologia , Citidina Desaminase/metabolismo , DNA Circular/metabolismo , DNA Viral/metabolismo , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Neoplasias Hepáticas/virologia , Antígenos de Histocompatibilidade Menor/metabolismo , Adulto , Idoso , Antígenos Virais/genética , Antígenos Virais/metabolismo , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Estudos de Casos e Controles , Citidina Desaminase/genética , DNA Circular/química , DNA Circular/genética , DNA Viral/química , DNA Viral/genética , Expressão Gênica , Vírus da Hepatite B/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Hidrólise , Fígado/enzimologia , Fígado/patologia , Fígado/virologia , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA