Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 277: 126389, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38852346

RESUMO

Ammonia is a prevalent aquatic pollutant that disrupts cellular functions and energy metabolism in fish, posing significant environmental and health threats. This research investigates the critical role of arginase 2 (ARG2) in mitigating ammonia toxicity in fish cells and its implications in adapting to nitrogen metabolism under high ammonia exposure. Through a CRISPR-Cas9 engineered ARG2 knockdown (KD) in the Epithelioma Papulosum Cyprini (EPC) cell line, we first investigated the biochemical responses of ARG2 KD and wild-type (WT) EPC cells to ammonia stress (NH4Cl treatment), showing diminished urea production and decreased cell viability in ARG2 KD cells. Subsequently, single-cell Raman spectroscopy analysis revealed that ARG2 KD cells exhibited profound metabolic shifts, including changes in protein, nucleic acids, lipid and sugar levels, showing the adjusting role of ARG2 in the balance of carbohydrate and nitrogen metabolism. Furthermore, the upregulated responses of various amino acids, such as glutamine, arginine, alanine, glutamic acid, glycine, histidine, phenylalanine and valine, in WT cells after NH4Cl treatment diminished in ARG2 KD cells except for the decrease in aspartic acid, indicating a switching effect of ARG2 in nitrogen metabolism under ammonia stress. This study highlights ARG2's essential role in ammonia detoxification and emphasizes ARG2's protective function and its importance in metabolism, shedding light on the adaptive mechanisms fish cells deploy against high ammonia environments. These insights contribute to deep understanding of aquatic organisms' molecular responses to environmental ammonia pollution, offering potential strategies for their protection.

2.
Water Res ; 244: 120513, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651864

RESUMO

Membrane distillation (MD) technology has gained a lot of attention for treatment of geothermal brine, high salinity waste streams. However, mineral scaling remains a major challenge when treating complex high-salt brines. The development of surface-patterned superhydrophobic membranes is one of the core strategies to solve this problem. We prepared flat sheet membranes (F-PVDF) and hydrophobic membranes with micron-scale corrugated pattern (C-PVDF) using a phase separation method. Their scaling behavior was systematically evaluated using calcium sulfate solutions and the impact of the feed flow was innovatively investigated. Although C-PVDF shows higher contact angle and lower sliding angle than F-PVDF, the scaling resistance of C-PVDF in the perpendicular flow direction has worst scaling resistance. Although the nucleation barrier of the corrugated membrane is the same at both parallel and perpendicular flow directions based on the traditional thermodynamic nucleation theory, experimental observations show that the C-PVDF has the best scaling resistance in the parallel flow direction. A 3D computational fluid dynamics (CFD) model was used and the hydrodynamic state of the pattern membranes was assessed as a determinant of the scaling resistance. The corrugated membrane with parallel flow mode (flow direction in parallel to the corrugation ridge) induces higher fluid velocity within the channel, which mitigated the deposition of crystals. While in the perpendicular flow mode (flow direction in perpendicular to the corrugation ridge), the solutions confined in the corrugated grooves due to vortex shielding, which aggravates the scaling. These results shed light on the mechanism of scaling resistance of corrugated membranes from a hydrodynamic perspective and reveal the mechanism of anisotropy exhibited by corrugated membranes in MD.


Assuntos
Membranas Artificiais , Purificação da Água , Sulfato de Cálcio , Destilação , Anisotropia , Purificação da Água/métodos , Interações Hidrofóbicas e Hidrofílicas
3.
Oncotarget ; 6(30): 29675-93, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26377974

RESUMO

Glioblastoma, one of the most aggressive forms of brain cancer, is featured by high tumor cell motility and invasiveness, which not only fuel tumor infiltration, but also enable escape from surgical or other clinical interventions. Thus, better understanding of how these malignant traits are controlled will be key to the discovery of novel biomarkers and therapies against this deadly disease. Tetraspanin CD151 and its associated α3ß1 integrin have been implicated in facilitating tumor progression across multiple cancer types. How these adhesion molecules are involved in the progression of glioblastoma, however, remains largely unclear. Here, we examined an in-house tissue microarray-based cohort of 96 patient biopsies and TCGA dataset to evaluate the clinical significance of CD151 and α3ß1 integrin. Functional and signaling analyses were also conducted to understand how these molecules promote the aggressiveness of glioblastoma at molecular and cellular levels. Results from our analyses showed that CD151 and α3 integrin were significantly elevated in glioblastomas at both protein and mRNA levels, and exhibited strong inverse correlation with patient survival (p < 0.006). These adhesion molecules also formed tight protein complexes and synergized with EGF/EGFR to accelerate tumor cell motility and invasion. Furthermore, disruption of such complexes enhanced the survival of tumor-bearing mice in a xenograft model, and impaired activation of FAK and small GTPases. Also, knockdown- or pharmacological agent-based attenuation of EGFR, FAK or Graf (ARHGAP26)/small GTPase-mediated pathways markedly mitigated the aggressiveness of glioblastoma cells. Collectively, our findings provide clinical, molecular and cellular evidence of CD151-α3ß1 integrin complexes as promising prognostic biomarkers and therapeutic targets for glioblastoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Integrina alfa3beta1/metabolismo , Tetraspanina 24/metabolismo , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase 1 de Adesão Focal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Immunoblotting , Imuno-Histoquímica , Integrina alfa3beta1/genética , Isocitrato Desidrogenase/genética , Camundongos Nus , Mutação , Invasividade Neoplásica , Prognóstico , Interferência de RNA , Análise de Sobrevida , Tetraspanina 24/genética , Análise Serial de Tecidos , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA