Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 8(3): 437-444, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37416896

RESUMO

Cibotium barometz (Linn.) J. Sm., a tree fern in the Dicksoniaceae family, is an economically important industrial exported plant in China and widely used in Traditional Chinese Medicine. C. barometz produces a range of bioactive triterpenes and their metabolites. However, the biosynthetic pathway of triterpenes in C. barometz remains unknown. To clarify the origin of diverse triterpenes in C. barometz, we conducted de novo transcriptome sequencing and analysis of C. barometz rhizomes and leaves to identify the candidate genes involved in C. barometz triterpene biosynthesis. Three C. barometz triterpene synthases (CbTSs) candidate genes were obtained. All of them were highly expressed in C. barometz rhizomes, consisting of the accumulation pattern of triterpenes in C. barometz. To characterize the function of these CbTSs, we constructed a squalene- and oxidosqualene-overproducing yeast chassis by overexpressing all the enzymes in the MVA pathway under the control of GAL-regulated promoter and disrupted the GAL80 gene in Saccharomyces cerevisiae simultaneously. Heterologous expressing CbTS1, CbTS2, and CbTS3 in engineering yeast strain produced cycloartenol, dammaradiene, and diploptene, respectively. Phylogenetic analysis revealed that CbTS1 belongs to oxidosqualene cyclase, while CbTS2 and CbTS3 belong to squalene cyclase. These results decipher enzymatic mechanisms underlying the origin of diverse triterpene in C. barometz.

2.
Front Genet ; 13: 828877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480310

RESUMO

Bufo bufo gargarizans Cantor are precious medicinal animals in traditional Chinese medicine (TCM). Bufadienolides as the major pharmacological components are generated from the venomous glands of B. bufo gargarizans. Bufadienolides are one type of cardiac aglycone with a six-member lactone ring and have properties of antitumor, cardiotonic, tonsillitis, and anti-inflammatory. The biosynthesis of bufadienolides is complex and unclear. This study explored the transcriptome of three different tissues (skin glands, venom glands, and muscles) of B. bufo gargarizans by high-throughput sequencing. According to the gene tissue-specific expression profile, 389 candidate genes were predicted possibly participating in the bufadienolides biosynthesis pathway. Then, BbgCYP11A1 was identified as a cholesterol side chain cleaving the enzyme in engineering yeast producing cholesterol. Furthermore, the catalytic activity of BbgCYP11A1 was studied with various redox partners. Interestingly, a plant NADPH-cytochrome P450 reductase (CPR) from Anemarrhena asphodeloides showed notably higher production than BbgAdx-2A-BbgAdR from B. bufo gargarizans. These results will provide certainly molecular research to reveal the bufadienolides biosynthesis pathway in B. bufo gargarizans.

3.
Synth Syst Biotechnol ; 7(1): 621-630, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35198747

RESUMO

Anemarrhena asphodeloides is an immensely popular medicinal herb in China, which contains an abundant of mangiferin. As an important bioactive xanthone C-glycoside, mangiferin possesses a variety of pharmacological activities and is derived from the cyclization reaction of a benzophenone C-glycoside (maclurin). Biosynthetically, C-glycosyltransferases are critical for the formation of benzophenone C-glycosides. However, the benzophenone C-glycosyltransferases from Anemarrhena asphodeloides have not been discovered. Herein, a promiscuous C-glycosyltransferase (AaCGT) was identified from Anemarrhena asphodeloides. It was able to catalyze efficiently mono-C-glycosylation of benzophenone, together with di-C-glycosylation of dihydrochalcone. It also exhibited the weak O-glycosylation or potent S-glycosylation capacities toward 12 other types of flavonoid scaffolds and a simple aromatic compound with -SH group. Homology modeling and mutagenesis experiments revealed that the glycosylation reaction of AaCGT was initiated by the conserved residue H23 as the catalytic base. Three critical residues H356, W359 and D380 were involved in the recognition of sugar donor through hydrogen-bonding interactions. In particular, the double mutant of F94W/L378M led to an unexpected enzymatic conversion of mono-C- to di-C-glycosylation. This study highlights the important value of AaCGT as a potential biocatalyst for efficiently synthesizing high-value C-glycosides.

4.
Phytochemistry ; 192: 112954, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34543875

RESUMO

Anemarrhena asphodeloides Bunge (Liliaceae) is an important Traditional Chinese Medicine herb, which contains up to 6 % total steroidal saponins (timosaponins) and has multiple pharmacological properties. However, the timosaponin biosynthetic pathway has not been extensively investigated. Here we conducted de novo transcriptome sequencing and analysis of A. asphodeloides Bunge and screened for candidate genes involved in the timosaponin biosynthetic pathway. Targeted metabolite analysis showed that timosaponins primarily accumulated in rhizomes, while phytosterols (including cholesterol) were distributed throughout various organs. Most of the identified candidate genes of the timosaponin biosynthetic pathway were also highly expressed in the rhizome, consistent with the results of metabolic analysis. Based on the transcriptome results, two candidate 7-dehydrocholesterol reductase genes were cloned and heterologously expressed in the yeast Saccharomyces cerevisiae. The purified and identified products supported that Aa7DR1 possessed Δ7-reduction activity in yeast and therefore may be involved in the timosaponins biosynthetic pathway in A. asphodeloides Bunge. Phylogenetic analysis showed Aa7DR1 belongs to monocotyledonous Δ7 reductase of phytosterol biosynthesis. These data expand our understanding of timosaponin biosynthesis.


Assuntos
Anemarrhena , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Saponinas , Anemarrhena/enzimologia , China , Filogenia , Plantas Medicinais/enzimologia , Plantas Medicinais/metabolismo , Rizoma , Esteroides , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA