Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(26): 16832-16841, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888500

RESUMO

van der Waals heterojunctions based on transition-metal dichalcogenides (TMDs) offer advanced strategies for manipulating light-emitting and light-harvesting behaviors. A crucial factor determining the light-material interaction is in the band alignment at the heterojunction interface, particularly the distinctions between type-I and type-II alignments. However, altering the band alignment from one type to another without changing the constituent materials is exceptionally difficult. Here, utilizing Bi2O2Se with a thickness-dependent band gap as a bottom layer, we present an innovative strategy for engineering interfacial band configurations in WS2/Bi2O2Se heterojunctions. In particular, we achieve tuning of the band alignment from type-I (Bi2O2Se straddling WS2) to type-II and finally to type-I (WS2 straddling Bi2O2Se) by increasing the thickness of the Bi2O2Se bottom layer from monolayer to multilayer. We verified this band architecture conversion using steady-state and transient spectroscopy as well as density functional theory calculations. Using this material combination, we further design a sophisticated band architecture incorporating both type-I (WS2 straddles Bi2O2Se, fluorescence-quenched) and type-I (Bi2SeO5 straddles WS2, fluorescence-recovered) alignments in one sample through focused laser beam (FLB). By programming the FLB trajectory, we achieve a predesigned localized fluorescence micropattern on WS2 without changing its intrinsic atomic structure. This effective band architecture design strategy represents a significant leap forward in harnessing the potential of TMD heterojunctions for multifunctional photonic applications.

2.
Chem Commun (Camb) ; 60(42): 5514-5517, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38693792

RESUMO

In this study, we propose a novel therapy system composed of UiO-66 nanoparticles, which contain quercetin combined with chloroquine (UQCNP), to achieve dual autophagy-ubiquitination blockade. Through UiO-66 NP drug loading, the solubility of quercetin (a proteasome inhibitor) was improved under physiological conditions, thereby increasing its effective concentration at the tumor site. The cell experiment results showed that UQCNP significantly increased the apoptosis rate of 4T1 cells by 73.6%, which was significantly higher than other groups. Transmission electron microscopy results showed that the autophagosome of cells in the UQCNP treatment group was significantly lower than that in other treatment groups. Moreover, western blot results showed that, compared with other groups, LC3 expression and proteasome activity (p < 0.01), as well as the tumor volume of mice treated with UQCNP (p < 0.01) were significantly reduced. These results indicate that UQCNP achieves effective tumor therapy by blocking the autophagy and proteasome pathways synchronously.


Assuntos
Autofagia , Cloroquina , Nanopartículas , Quercetina , Ubiquitinação , Quercetina/farmacologia , Quercetina/química , Cloroquina/farmacologia , Cloroquina/química , Animais , Autofagia/efeitos dos fármacos , Camundongos , Nanopartículas/química , Ubiquitinação/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Humanos
3.
Adv Sci (Weinh) ; 11(4): e2305016, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037482

RESUMO

With outstanding advantages of chemical synthesis, structural diversity, and mechanical flexibility, molecular ferroelectrics have attracted increasing attention, demonstrating themselves as promising candidates for next-generation wearable electronics and flexible devices in the film form. However, it remains a challenge to grow high-quality thin films of molecular ferroelectrics. To address the above issue, a volume-confined method is utilized to achieve ultrasmooth single-crystal molecular ferroelectric thin films at the sub-centimeter scale, with the thickness controlled in the range of 100-1000 nm. More importantly, the preparation method is applicable to most molecular ferroelectrics and has no dependency on substrates, showing excellent reproducibility and universality. To demonstrate the application potential, two-dimensional (2D) transitional metal dichalcogenide semiconductor/molecular ferroelectric heterostructures are prepared and investigated by optical spectroscopic method, proving the possibility of integrating molecular ferroelectrics with 2D layered materials. These results may unlock the potential for preparing and developing high-performance devices based on molecular ferroelectric thin films.

4.
Phys Eng Sci Med ; 46(3): 981-994, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37378823

RESUMO

TaiChi, a new multi-modality radiotherapy platform that integrates a linear accelerator, a focusing gamma system, and a kV imaging system within an enclosed O-ring gantry, was introduced into clinical application. This work aims to assess the technological characteristics and commissioning results of the TaiChi platform. The acceptance testing and commissioning were performed following the manufacturer's customer acceptance tests (CAT) and several AAPM Task Group (TG) reports/guidelines. Regarding the linear accelerator (linac), all applicable validation measurements recommended by the MPPG 5.a (basic photon beam model validation, intensity-modulated radiotherapy (IMRT)/volumetric-modulated arc therapy (VMAT) validation, end-to-end(E2E) tests, and patient-specific quality assurance (QA)) were performed. For the focusing gamma system, the absorbed doses were measured using a PTW31014 ion chamber (IC) and PTW60016 diode detector. EBT3 films and a PTW60016 diode detector were employed to measure the relative output factors (ROFs). The E2E tests were performed using PTW31014 IC and EBT3 films. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were investigated using EBT3 films. The image quality was evaluated regarding the contrast-to-noise ratio (CNR), spatial resolution, and uniformity. All tests included in the CAT met the manufacturer's specifications. All MPPG 5.a measurements complied with the tolerances. The confidence limits for IMRT/VMAT point dose and dose distribution measurements were achieved according to TG-119. The point dose differences were below 1.68% and gamma passing rates (3%/2 mm) were above 95.1% for the linac E2E tests. All plans of patient-specific QA had point dose differences below 1.79% and gamma passing rates above 96.1% using the 3%/2 mm criterion suggested by TG-218. For the focusing gamma system, the differences between the calculated and measured absorbed doses were below 1.86%. The ROFs calculated by the TPS were independently confirmed within 2% using EBT3 films and a PTW60016 detector. The point dose differences were below 2.57% and gamma passing rates were above 95.3% using the 2%/1 mm criterion for the E2E tests. The coincidences between the imaging isocenter and the linac/gamma mechanical isocenter were within 0.5 mm. The image quality parameters fully complied with the manufacturer's specifications regarding the CNR, spatial resolution, and uniformity. The multi-modality radiotherapy platform complies with the CAT and AAPM commissioning criteria. The commissioning results demonstrate that this platform performs well in mechanical and dosimetry accuracy.


Assuntos
Radioterapia de Intensidade Modulada , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas , Dosagem Radioterapêutica , Radiometria
5.
Inorg Chem ; 60(8): 5413-5418, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33788549

RESUMO

We report a new scheme for chiral recognition using coordination polymers of Ag+ with a chiral thiol ligand that contains a binding group. N-Benzoyl-l-cysteine ethyl ester equipped with a boronic acid group at the para position of the phenyl ring forms coordination polymers with Ag+ in alkaline aqueous solutions that exhibit excellent selectivity toward a d-glucose enantiomer over l-glucose, while the coordination polymers from the d-cysteine-based thiol ligand are specific for l-glucose. It is assumed that a conformation change occurs upon interaction of a saccharide molecule with the polymeric chain receptor, for which the next binding is promoted, leading to the highly effective chiral recognition, despite the flexible nature of the polymeric receptor.


Assuntos
Complexos de Coordenação/química , Cisteína/química , Glucose/análise , Polímeros/química , Prata/química , Compostos de Sulfidrila/química , Sítios de Ligação , Complexos de Coordenação/síntese química , Ligantes , Estrutura Molecular
6.
Nanomaterials (Basel) ; 8(7)2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011931

RESUMO

Calcium fluoride (CaF2) nanoparticles with various terbium (Tb) doping concentrations were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and alternating current (AC) impedance measurement. The original shape and structure of CaF2 nanoparticles were retained after doping. In all the samples, the dominant charge carriers were electrons, and the F- ion transference number increased with increasing Tb concentration. The defects in the grain region considerably contributed to the electron transportation process. When the Tb concentration was less than 3%, the effect of the ionic radius variation dominated and led to the diffusion of the F- ions and facilitated electron transportation. When the Tb concentration was greater than 3%, the increasing deformation potential scattering dominated, impeding F- ion diffusion and electron transportation. The substitution of Ca2+ by Tb3+ enables the electron and ion hopping in CaF2 nanocrystals, resulting in increased permittivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA