Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 14(4): e0214024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30998682

RESUMO

Persulfate (PSF) is a strong oxidant that has been used extensively in the In-Situ Chemical Oxidation (ISCO) technology. The geoenvironmental impact of PSF treatment is barely investigated. This situation should be carefully considered as it may affect the reutilization of contaminated soil as engineering materials. This paper studied the removal of bisphenol A (BPA) by PSF with Nano Zero-Valent Iron (nZVI) and percarbonate (SPC) activated/enhanced and their subsequent impacts on the engineering properties of soil. The physicochemical and geotechnical properties of soils before and after treatment were evaluated using batch experiments. The results indicate that the introduced pristine PSF can be activated by some naturally occurring matters and subsequently lead to the mineralization of BPA. Both non-activated PSF and activated/enhanced PSF treatment led to the soil improvement in the undrained shear strength at different degrees. The primary mechanism of soil improvement is ascribed to the heterogeneous sulfate and/or carbonate precipitation. Meanwhile, Ca2+ in the pore fluid played a significant role in the enhancement of the soil strength. A conclusion was drawn that the treatment of both non-activated PSF, nZVI- and SPC-activated PSF treatment can achieve removal of BPA and soil improvement in the short-term simultaneously. This study can improve the PSF-involved remediation of brownfields and dredged sediments for a sustainable and low-carbon society.


Assuntos
Compostos Benzidrílicos/química , Poluição Ambiental , Recuperação e Remediação Ambiental/métodos , Fenóis/química , Poluentes do Solo/química , Sulfatos/química , Carbonatos/química , Ferro/química , Oxirredução , Solo/química
2.
Sci Total Environ ; 651(Pt 1): 877-884, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30257228

RESUMO

This study demonstrates the feasibility of nanoscale Zero-Valent Iron (nZVI) for simultaneous stabilization of Pb and improvement of soil strength via batch experiments. The soil samples were prepared using slurry and pre-consolidation method at nZVI doses of 0.2%, 1%, 5%, and 10% (by dry weight). The physicochemical and geotechnical properties of Pb-contaminated soil treated by nZVI were analyzed. The results indicate that the contamination of Pb(II) resulted in a notable reduction in the undrained shear strength of soil from 16.85 kPa to 7.25 kPa. As expected, the Pb in exchangeable and carbonate-bound fractions decreased significantly with the increasing doses of nZVI. Meanwhile, the undrained shear strength of Pb-contaminated soil enhanced substantially as the increase of nZVI, from 25.83 kPa (0.2% nZVI treatment) to 69.33 kPa (10% nZVI treatment). An abundance of bubbles, generated from the oxidation of nZVI, was recorded. The mechanisms for simultaneous stabilization of Pb and soil improvement primarily include: 1) the precipitation and transformation of Pb-/Fe-hydrated oxides on the soil particles and their induced bounding effects; 2) the increased drainage capability of soil as the occupation of nZVI aggregates and bubbles in the macropores space and 3) the lower soil density derived from the increase in microbubbles retained in the soil. This study is provided to facilitate the application of nZVI in the redevelopment of contaminated soil.


Assuntos
Recuperação e Remediação Ambiental/métodos , Chumbo/química , Poluentes do Solo/química , Solo/química , Ferro/química , Nanopartículas Metálicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA