Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(31): 33616-33628, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39130546

RESUMO

This work includes a novel approach for synthesis/fabrication of AuNRs of varied aspect ratios leading to investigation on the kinetics of their growth mechanism. The synthesized AuNRs were further functionalized with MWCNTs (AuNRs@MWCNTs) by one-pot synthesis. The synthesized AuNRs and AuNRs@MWCNTs were characterized by employing UV-vis spectroscopy. Red shifts in the spectra of AuNRs confirmed the formation of nanorods of higher aspect ratios. Morphology of AuNRs and functionalized AuNRs was confirmed by high-resolution scanning electron microscopy. Biological studies were carried out by fabricating efficient nonenzymatic glucose sensors for optical and electrochemical sensing via UV and cyclic voltammetry in the detection ranges of 0.7-28 mM glucose (UV) and 5.5 µM-0.33 mM (CV). An electrochemical sensing study was carried out via AuNR- and AuNRs@MWCNT-modified GCEs in a 0.1 M NaOH electrolyte solution. The modified electrodes exhibited very high sensitivity with a broad linear range. The order of sensitivity (via CV) was found to be AuNRX0@MWCNTs > AuNRD5@MWCNTs > AuNRD5 > AuNRX0.

2.
Protein Eng Des Sel ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141844

RESUMO

Antibody discovery processes are continually advancing, with an ever-increasing number of potential binding sequences being identified out of in vivo, in vitro, and in silico sources. In this work we describe a rapid system for high yield recombinant antibody (IgG and Fab) expression using Gibson assembled linear DNA fragments (GLFs). The purified recombinant antibody yields from 1 ml expression for this process are approximately five to ten-fold higher than previous methods, largely due to novel usage of protecting flanking sequences on the 5' and 3' ends of the GLF. This method is adaptable for small scale (1 mL) expression and purification for rapid evaluation of binding and activity, in addition to larger scales (30 mL) for more sensitive assays requiring milligram quantities of antibody purified over two columns (Protein A and size exclusion chromatography). When compared to plasmid-based expression, these methods provide nearly equivalent yield of high-quality material across multiple applications, allowing for reduced costs and turnaround times to enhance the antibody discovery process.

3.
Small ; : e2402534, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850182

RESUMO

In this study, the copper-nickel (Cu-Ni) bimetallic electrocatalysts for electrochemical CO2 reduction reaction(CO2RR) are fabricated by taking the finely designed poly(ionic liquids) (PIL) containing abundant Salen and imidazolium chelating sites as the surficial layer, wherein Cu-Ni, PIL-Cu and PIL-Ni interaction can be readily regulated by different synthetic scheme. As a proof of concept, Cu@Salen-PIL@Ni(NO3)2 and Cu@Salen-PIL(Ni) hybrids differ significantly in the types and distribution of Ni species and Cu species at the surface, thereby delivering distinct Cu-Ni cooperation fashion for the CO2RR. Remarkably, Cu@Salen-PIL@Ni(NO3)2 provides a C2+ faradaic efficiency (FEC2+) of 80.9% with partial current density (jC 2+) of 262.9 mA cm-2 at -0.80 V (versus reversible hydrogen electrode, RHE) in 1 m KOH in a flow cell, while Cu@Salen-PIL(Ni) delivers the optimal FEC2+ of 63.8% at jC2+ of 146.7 mA cm-2 at -0.78 V. Mechanistic studies indicates that the presence of Cu-Ni interfaces in Cu@Salen-PIL@Ni(NO3)2 accounts for the preserve of high-valence Cu(I) species under CO2RR conditions. It results in a high activity of both CO2-to-CO conversion and C-C coupling while inhibition of the competitive HER.

4.
iScience ; 27(6): 109997, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38868177

RESUMO

The kidney is a vital organ responsible for water and sodium metabolism, while the primary function of amiloride is to promote the excretion of water and sodium. We investigated amiloride enhanced the sunitinib sensitivity in RCC. We found both sunitinib and amiloride displayed cytotoxicity and exerted the synergy effect in RCC cells in vivo and in vitro arrays. Protein expression profiles were screened via MS/TMT, revealing that FN3K was upregulated in the sunitinib group, and rescued in amiloride and the combination administration. Exogenous FN3K could promote proliferation, invasion and metastasis and decrease the sensitivity of Caki-1 cells to sunitinib, also, exogenous FN3K up-regulated VEGFR2 expression and activated AKT/mTOR signal pathway. More FN3K and VEGFR2 accumulated in R-Caki-1 cells and rescued by amiloride treatment. Co-IP and IF confirmed the interaction between FN3K and VEGFR2. In conclusion, FN3K depletion mediated VEGFR2 disruption promotes amiloride synergized the anti-RCC activity of sunitinib.

5.
J Med Virol ; 96(6): e29733, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874268

RESUMO

Viruses in human semen may be sexually transmitted via free and cell-mediated viral infection. The potential effects of semen on the infection and sexual transmission of most viruses in semen remain largely unclear. The present study elucidated the inhibitory effects of human seminal plasma (SP) on Jurkat cell (JC)-mediated mumps virus (MuV) infection. We demonstrated that MuV efficiently infected JCs and that the JCs infected by MuV (JC-MuV) mediated MuV infection of HeLa cells. Remarkably, SP was highly cytotoxic to JCs and inhibited JC-MuV infection of HeLa cells. The cytotoxic factor possessed a molecular weight of less than 3 kDa, whereas that of the viricidal factor was over 100 kDa. The cooperation of cytotoxic and viricidal factors was required for the SP inhibition of JC-MuV infection, and prostatic fluid (PF) was responsible for both the cytotoxic and viricidal effects of SP. The cytotoxic effects we observed were resistant to the treatment of PF with boiling water, proteinase K, RNase A, and DNase I. Our results provide novel insights into the antiviral properties of SP, which may limit cell-mediated sexual viral transmission.


Assuntos
Vírus da Caxumba , Sêmen , Humanos , Vírus da Caxumba/fisiologia , Sêmen/virologia , Masculino , Células HeLa , Linfócitos/virologia , Células Jurkat , Sobrevivência Celular , Peso Molecular
6.
Int J Biol Macromol ; 271(Pt 1): 132333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754686

RESUMO

The fabrication of scaffolds capable of the sustained release of the vascular endothelial growth factor (VEGF) to promote angiogenesis for a long time remains a challenge in tissue engineering. Here, we report a facile approach for effectively fabricating a bioactive scaffold that gradually releases VEGF to promote angiogenesis. The scaffold was fabricated by coating polydopamine (PDA) on a konjac glucomannan (KGM) scaffold, followed by the surface immobilization of VEGF with PDA. The resulting VEGF-PDA/KGM scaffold, with a porous and interconnected microstructure (392 µm pore size with 84.80 porosity), combined the features of long-term biodegradability (10 weeks with 51 % degradation rate), excellent biocompatibility, and sustained VEGF release for up to 21 days. The bioactive VEGF-PDA/KGM scaffold exhibited multiple angiogenic activities over time, as confirmed by in vivo and in vitro experiments. For example, the scaffold significantly promoted the attachment and proliferation of human umbilical vein endothelial cells and the formation of vascular tubes in vitro. Moreover, the in vivo results demonstrated the formation and maturation of blood vessels after subcutaneous implantation in rats for four weeks. This promising strategy is a feasible approach for producing bioactive materials that can induce angiogenesis in vivo. These findings provide a new avenue for designing and fabricating biocompatible and long-term biodegradable scaffolds for sustained VEGF release to facilitate angiogenesis.


Assuntos
Preparações de Ação Retardada , Células Endoteliais da Veia Umbilical Humana , Indóis , Mananas , Neovascularização Fisiológica , Polímeros , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular , Indóis/química , Indóis/farmacologia , Polímeros/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Mananas/química , Mananas/farmacologia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alicerces Teciduais/química , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Preparações de Ação Retardada/farmacologia , Ratos , Porosidade , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Liberação Controlada de Fármacos , Masculino , Angiogênese
7.
iScience ; 27(4): 109553, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38623338

RESUMO

Electrocatalytic generation of H2O2 via the 2-electron pathway of oxygen reduction reaction (2e-ORR) is an attractive technology compared to the anthraquinone process due to convenience and environmental friendliness. However, catalysts with excellent selectivity and high activity for 2e-ORR are necessary for practical applications. Reported here is a catalyst comprising boron-doped porous carbon hollow spheres (B-PCHSs) prepared using the hard template method coupled with borate transesterification. In an alkali electrolyte, the selectivity of B-PCHS for 2e-ORR above 90% in range of 0.4-0.7 VRHE and an onset potential of 0.833 V was obtained. Meanwhile, the generation rate of H2O2 reached 902.48 mmol h-1 gcat-1 at 0.4 VRHE under 59.13 mA cm-2 in batch electrolysis. The excellent catalytic selectivity of B-PCHS for 2e-ORR originates from the boron element, and the catalytic activity of B-PCHS for H2O2 generation is contributed to the morphology of porous hollow spheres, which facilitates mass transfer processes.

8.
Materials (Basel) ; 17(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673105

RESUMO

Electrosynthesis of H2O2 via both pathways of anodic two-electron water oxidation reaction (2e-WOR) and cathodic two-electron oxygen reduction reaction (2e-ORR) in a diaphragm-free bath can not only improve the generation rate and Faraday efficiency (FE), but also simplify the structure of the electrolysis bath and reduce the energy consumption. The factors that may affect the efficiency of H2O2 generation in coupled electrolytic systems have been systematically investigated. A piece of fluorine-doped tin oxide (FTO) electrode was used as the anode, and in this study, its catalytic performance for 2e-WOR in Na2CO3/NaHCO3 and NaOH solutions was compared. Based on kinetic views, the generation rate of H2O2 via 2e-WOR, the self-decomposition, and the oxidative decomposition rate of the generated H2O2 during electrolysis in carbonate electrolytes were investigated. Furthermore, by choosing polyethylene oxide-modified carbon nanotubes (PEO-CNTs) as the catalyst for 2e-ORR and using its loaded electrode as the cathode, the coupled electrolytic systems for H2O2 generation were set up in a diaphragm bath and in a diaphragm-free bath. It was found that the generated H2O2 in the electrolyte diffuses and causes oxidative decomposition on the anode, which is the main influent factor on the accumulated concentration in H2O2 in a diaphragm-free bath.

9.
Res Sq ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38645014

RESUMO

We analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CRISPR edited, CHD1 deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. We found that subclonal deletion of CHD1 is nearly three times as frequent in prostate tumors of African American men than in men of European ancestry and it associates with rapid disease progression. We further showed that CHD1 deletion is not associated with homologous recombination deficiency associated mutational signatures in prostate cancer. In prostate cancer cell line models CHD1 deletion did not induce HR deficiency as detected by RAD51 foci formation assay or mutational signatures, which was consistent with the moderate increase of olaparib sensitivity. CHD1 deficient prostate cancer cells, however, showed higher sensitivity to talazoparib. CHD1 loss may contribute to worse outcome of prostate cancer in African American men. A deeper understanding of the interaction between CHD1 loss and PARP inhibitor sensitivity will be needed to determine the optimal use of targeted agents such as talazoparib in the context of castration resistant prostate cancer.

10.
PLoS One ; 19(4): e0297122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662671

RESUMO

Site specific biotinylation of AviTagged recombinant proteins using BirA enzyme is a widely used protein labeling technology. However, due to the incomplete biotinylation reactions and the lack of a purification method specific for the biotinylated proteins, it is challenging to purify the biotinylated sample when mixed with the non-biotinylated byproduct. Here, we have developed a monoclonal antibody that specifically recognizes the non-biotinylated AviTag but not the biotinylated sequence. After a ten-minute incubation with the resin that is conjugated with the antibody, the non-biotinylated AviTagged protein is trapped on the resin while the fully biotinylated material freely passes through. Therefore, our AviTrap (anti-AviTag antibody conjugated resin) provides an efficient solution for enriching biotinylated AviTagged proteins via a simple one-step purification.


Assuntos
Anticorpos Monoclonais , Biotinilação , Anticorpos Monoclonais/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Humanos , Biotina/química , Animais , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo
11.
Toxicol Sci ; 200(1): 137-145, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38603617

RESUMO

Administration of high-dose vitamin K1 (VK1) overcomes coagulopathy and bleeding elicited by acute poisoning with long-acting anticoagulant rodenticides (LAARs). However, long-term (months) treatment is required due to long LAAR biological half-lives that may lead to poor compliance and recurrent coagulopathy. The half-lives of LAARs are extended by slow metabolism, and similar to warfarin, are thought to undergo enterohepatic recirculation. We now show that treatment with the bile acid sequestrant cholestyramine (CSA) administered concomitantly with VK1 decreases plasma LAAR levels and increases LAAR fecal excretion. Daily CSA treatment for 14 days did not reduce plasma VK1 levels, or increase prothrombin time. Collectively, these data show that CSA accelerates LAAR clearance from rabbits without adverse effects on VK1 anticoagulation, and could provide an additional therapeutic option for treatment of LAAR poisoning.


Assuntos
Anticoagulantes , Coagulação Sanguínea , Resina de Colestiramina , Fezes , Rodenticidas , Vitamina K 1 , Animais , Coelhos , Rodenticidas/farmacocinética , Rodenticidas/sangue , Anticoagulantes/administração & dosagem , Anticoagulantes/farmacocinética , Vitamina K 1/sangue , Vitamina K 1/administração & dosagem , Coagulação Sanguínea/efeitos dos fármacos , Masculino , Fezes/química , Meia-Vida , Tempo de Protrombina , Taxa de Depuração Metabólica
12.
Materials (Basel) ; 17(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612173

RESUMO

Rechargeable aqueous zinc-ion batteries have attracted a lot of attention owing to their cost effectiveness and plentiful resources, but less research has been conducted on the aspect of high volumetric energy density, which is crucial to the space available for the batteries in practical applications. In this work, highly crystalline V2O5 microspheres were self-assembled from one-dimensional V2O5 nanorod structures by a template-free solvothermal method, which were used as cathode materials for zinc-ion batteries with high performance, enabling fast ion transport, outstanding cycle stability and excellent rate capability, as well as a significant increase in tap density. Specifically, the V2O5 microspheres achieve a reversible specific capacity of 414.7 mAh g-1 at 0.1 A g-1, and show a long-term cycling stability retaining 76.5% after 3000 cycles at 2 A g-1. This work provides an efficient route for the synthesis of three-dimensional materials with stable structures, excellent electrochemical performance and high tap density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA