Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
APL Bioeng ; 8(3): 036110, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39165611

RESUMO

Cartilage damage, a common cause of osteoarthritis, requires medical imaging for accurate diagnosis of pathological changes. However, current instruments can acquire limited imaging information due to sensitivity and resolution issues. Therefore, multimodal imaging is considered an alternative strategy to provide valuable images and analyzes from different perspectives. Among all biomaterials, gold nanomaterials not only exhibit outstanding benefits as drug carriers, in vitro diagnostics, and radiosensitizers, but are also widely used as contrast agents, particularly for tumors. However, their potential for imaging cartilage damage is rarely discussed. In this study, we developed a versatile iodinated gadolinium-gold nanomaterial, AuNC@BSA-Gd-I, and its radiolabeled derivative, AuNC@BSA-Gd-131I, for cartilage detection. With its small size, negative charge, and multimodal capacities, the probe can penetrate damaged cartilage and be detected or visualized by computed tomography, MRI, IVIS, and gamma counter. Additionally, the multimodal imaging potential of AuNC@BSA-Gd-I was compared to current multifunctional gold nanomaterials containing similar components, including anionic AuNC@BSA, AuNC@BSA-I, and AuNC@BSA-Gd as well as cationic AuNC@CBSA. Due to their high atomic numbers and fluorescent emission, AuNC@BSA nanomaterials could provide fundamental multifunctionality for imaging. By further modifying AuNC@BSA with additional imaging materials, their application could be extended to various types of medical imaging instruments. Nonetheless, our findings showed that each of the current nanomaterials exhibited excellent abilities for imaging cartilage with their predominant imaging modalities, but their versatility was not comparable to that of AuNC@BSA-Gd-I. Thus, AuNC@BSA-Gd-I could be served as a valuable tool in multimodal imaging strategies for cartilage assessment.

2.
Chin J Integr Med ; 30(10): 906-916, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39167283

RESUMO

OBJECTIVE: To investigate potential mechanisms of anti-atherosclerosis by berberine (BBR) using ApoE-/- mice. METHODS: Eight 8-week-old C57BL/6J mice were used as a blank control group (normal), and 56 8-week-old AopE-/- mice were fed a high-fat diet for 12 weeks, according to a completely random method, and were divided into the model group, BBR low-dose group (50 mg/kg, BBRL), BBR medium-dose group (100 mg/kg, BBRM), BBR high-dose group (150 mg/kg, BBRH), BBR+nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor group (100 mg/kg BBR+30 mg/kg ML385, BBRM+ML385), NRF2 inhibitor group (30 mg/kg, ML385), and positive control group (2.5 mg/kg, atorvastatin), 8 in each group. After 4 weeks of intragastric administration, samples were collected and serum, aorta, heart and liver tissues were isolated. Biochemical kits were used to detect serum lipid content and the expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in all experimental groups. The pathological changes of atherosclerosis (AS) were observed by aorta gross Oil Red O, aortic sinus hematoxylin-eosin (HE) and Masson staining. Liver lipopathy was observed in mice by HE staining. The morphology of mitochondria in aorta cells was observed under transmission electron microscope. Flow cytometry was used to detect reactive oxygen species (ROS) expression in aorta of mice in each group. The content of ferrous ion Fe2+ in serum of mice was detected by biochemical kit. The mRNA and protein relative expression levels of NRF2, glutathione peroxidase 4 (GPX4) and recombinant solute carrier family 7 member 11 (SLC7A11) were detected by quantitative real time polymerase chain reaction (RT-qPCR) and Western blot, respectively. RESULTS: BBRM and BBRH groups delayed the progression of AS and reduced the plaque area (P<0.01). The characteristic morphological changes of ferroptosis were rarely observed in BBR-treated AS mice, and the content of Fe2+ in BBR group was significantly lower than that in the model group (P<0.01). BBR decreased ROS and MDA levels in mouse aorta, increased SOD activity (P<0.01), significantly up-regulated NRF2/SLC7A11/GPX4 protein and mRNA expression levels (P<0.01), and inhibited lipid peroxidation. Compared with the model group, the body weight, blood lipid level and aortic plaque area of ML385 group increased (P<0.01); the morphology of mitochondria showed significant ferroptosis characteristics; the serum Fe2+, MDA and ROS levels increased (P<0.05 or P<0.01), and the activity of SOD decreased (P<0.01). Compared with BBRM group, the iron inhibition effect of BBRM+ML385 group was significantly weakened, and the plaque area significantly increased (P<0.01). CONCLUSION: Through NRF2/SLC7A11/GPX4 pathway, BBR can resist oxidative stress, inhibit ferroptosis, reduce plaque area, stabilize plaque, and exert anti-AS effects.


Assuntos
Berberina , Ferroptose , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Placa Aterosclerótica , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Berberina/farmacologia , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Ferroptose/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Sistema y+ de Transporte de Aminoácidos
3.
Pharmaceutics ; 16(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065625

RESUMO

The clinical management of malignant tumours is challenging, often leading to severe adverse effects and death. Drug resistance (DR) antagonises the effectiveness of treatments, and increasing drug dosage can worsen the therapeutic index (TI). Current efforts to overcome DR predominantly involve the use of drug combinations, including applying multiple anti-cancerous drugs, employing drug sensitisers, which are chemical agents that enhance pharmacokinetics (PK), including the targeting of cellular pathways and regulating pertinent membrane transporters. While combining multiple compounds may lead to drug-drug interactions (DDI) or polypharmacy effect, the use of drug sensitisers permits rapid attainment of effective treatment dosages at the disease site to prevent early DR and minimise side effects and will reduce the chance of DDI as lower drug doses are required. This review highlights the essential use of TI in evaluating drug dosage for cancer treatment and discusses the lack of a unified standard for TI within the field. Commonly used benefit-risk assessment criteria are summarised, and the critical exploration of the current use of TI in the pharmaceutical industrial sector is included. Specifically, this review leads to the discussion of drug sensitisers to facilitate improved ratios of effective dose to toxic dose directly in humans. The combination of drug and sensitiser molecules might see additional benefits to rekindle those drugs that failed late-stage clinical trials by the removal of detrimental off-target activities through the use of lower drug doses. Drug combinations and employing drug sensitisers are potential means to combat DR. The evolution of drug combinations and polypharmacy on TI are reviewed. Notably, the novel binary weapon approach is introduced as a new opportunity to improve TI. This review emphasises the urgent need for a criterion to systematically evaluate drug safety and efficiency for practical implementation in the field.

4.
Fa Yi Xue Za Zhi ; 40(2): 128-134, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38847026

RESUMO

OBJECTIVES: To establish age estimation models of northern Chinese Han adults using cranial suture images obtained by CT and multiplanar reformation (MPR), and to explore the applicability of cranial suture closure rule in age estimation of northern Chinese Han population. METHODS: The head CT samples of 132 northern Chinese Han adults aged 29-80 years were retrospectively collected. Volume reconstruction (VR) and MPR were performed on the skull, and 160 cranial suture tomography images were generated for each sample. Then the MPR images of cranial sutures were scored according to the closure grading criteria, and the mean closure grades of sagittal suture, coronal sutures (both left and right) and lambdoid sutures (both left and right) were calculated respectively. Finally taking the above grades as independent variables, the linear regression model and four machine learning models for age estimation (gradient boosting regression, support vector regression, decision tree regression and Bayesian ridge regression) were established for northern Chinese Han adults age estimation. The accuracy of each model was evaluated. RESULTS: Each cranial suture closure grade was positively correlated with age and the correlation of sagittal suture was the highest. All four machine learning models had higher age estimation accuracy than linear regression model. The support vector regression model had the highest accuracy among the machine learning models with a mean absolute error of 9.542 years. CONCLUSIONS: The combination of skull CT-MPR and machine learning model can be used for age estimation in northern Chinese Han adults, but it is still necessary to combine with other adult age estimation indicators in forensic practice.


Assuntos
Determinação da Idade pelo Esqueleto , Povo Asiático , Suturas Cranianas , Aprendizado de Máquina , Tomografia Computadorizada por Raios X , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Determinação da Idade pelo Esqueleto/métodos , Teorema de Bayes , China/etnologia , Suturas Cranianas/diagnóstico por imagem , População do Leste Asiático , Etnicidade , Antropologia Forense/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Modelos Lineares , Estudos Retrospectivos , Crânio/diagnóstico por imagem
5.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38671918

RESUMO

Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.

6.
J Am Chem Soc ; 146(12): 8131-8141, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471139

RESUMO

The ability of molecules to move and rearrange in the solid state accounts for the polymorphic transition and stimuli-responsive properties of molecular crystals. However, how the crystal structure determines the molecular motion ability remains poorly understood. Here, we report that a three-dimensional (3D) supramolecular gear network in the green-emissive polymorph 1G of a dialkylamino-substituted anthracene-pentiptycene π-system (1) enables an unusual bifurcated polymorphic transition into a yellow-emissive polymorph (1Y) and a new green-emissive polymorph (1G*) via 3D correlated supramolecular rotation. The 90° forward correlated rotation causes the molecular conformation between the octyl and the anthracene units to change from syn to anti, the ladder-like supramolecular columns to constrict, and the gear network to disengage. This cooperative molecular motion is marked by the gradual formation of an intermediate state (1I) across the entire crystal from 170 to 230 °C, which then undergoes bifurcated (forward or backward rotation) and irreversible transitions to form polymorphs 1Y and 1G* at 230-235 °C. Notably, 1G* is similar to 1G but lacks gear engagement, preventing its transformation into 1Y. Nevertheless, 1G can be restored by grinding 1Y or 1G* or fuming with dichloromethane (DCM) vapor. This work illustrates the correlation between the crystal structure and solid-state molecular motion behavior and demonstrates how a 3D molecular gear system efficiently transmits thermal energy to drive the polymorphic transition and induce fluorochromism through significant conformational and packing changes.

7.
J Alzheimers Dis ; 98(3): 941-955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489185

RESUMO

Background: As a prodromal stage of dementia, significant emphasis has been placed on the identification of modifiable risks of mild cognitive impairment (MCI). Research has indicated a correlation between exposure to air pollution and cognitive function in older adults. However, few studies have examined such an association among the MCI population inChina. Objective: We aimed to explore the association between air pollution exposure and MCI risk from the Hubei Memory and Aging Cohort Study. Methods: We measured four pollutants from 2015 to 2018, 3 years before the cognitive assessment of the participants. Logistic regression models were employed to calculate odds ratios (ORs) to assess the relationship between air pollutants and MCI risk. Results: Among 4,205 older participants, the adjusted ORs of MCI risk for the highest quartile of PM2.5, PM10, O3, and SO2 were 1.90 (1.39, 2.62), 1.77 (1.28, 2.47), 0.56 (0.42, 0.75), and 1.18 (0.87, 1.61) respectively, compared with the lowest quartile. Stratified analyses indicated that such associations were found in both males and females, but were more significant in older participants. Conclusions: Our findings are consistent with the growing evidence suggesting that air pollution increases the risk of mild cognitive decline, which has considerable guiding significance for early intervention of dementia in the older population. Further studies in other populations and broader geographical areas are warranted to validate these findings.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Disfunção Cognitiva , Demência , Masculino , Feminino , Humanos , Idoso , Estudos de Coortes , Estudos de Casos e Controles , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Disfunção Cognitiva/epidemiologia , China/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise
8.
Biomaterials ; 303: 122402, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988898

RESUMO

Developing scalable vascularized and innervated tissue is a critical challenge for the successful clinical application of tissue-engineered constructs. Collagen hydrogels are extensively utilized in cell-mediated vascular network formation because of their naturally excellent biological properties. However, the substantial increase in hydrogel contraction induced by populated cells limits their long-term use. Previous studies attempted to mitigate this issue by concentrating collagen pre-polymer solutions or synthesizing covalently crosslinked collagen hydrogels. However, these methods only partially reduce hydrogel contraction while hindering blood vessel formation within the hydrogels. To address this challenge, we introduced additional support in the form of a supportive spacer to counteract the contraction forces of populated cells and prevent hydrogel contraction. This approach was found to promote cell spreading, resist hydrogel contraction, control hydrogel/tissue geometry, and even facilitate the engineering of functional blood vessels and host nerve growth in just one week. Subsequently, implanting these engineered tissues into muscle defect sites resulted in timely anastomosis with the host vasculature, leading to enhanced myogenesis, increased muscle innervation, and the restoration of injured muscle functionality. Overall, this innovative strategy expands the applicability of collagen hydrogels in fabricating large vascularized nerve tissue constructs for repairing volumetric muscle loss (∼63 %) and restoring muscle function.


Assuntos
Hidrogéis , Tecido Nervoso , Engenharia Tecidual/métodos , Colágeno/farmacologia , Músculos
9.
Behav Brain Res ; 452: 114586, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37467965

RESUMO

Fragile X syndrome (FXS) is a common inherited cause of intellectual disabilities and single-gene cause of autism spectrum disorder (ASD), resulting from the loss of functional fragile X messenger ribonucleoprotein (FMRP), an RNA-binding protein (RBP) encoded by the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Ribonucleic acid (RNA) methylation can lead to developmental diseases, including FXS, through various mechanisms mediated by 5-hydroxymethylcytosine, 5-methylcytosine, N6-methyladenosine, etc. Emerging evidence suggests that modifications of some RNA species have been linked to FXS. However, the underlying pathological mechanism has yet to be elucidated. In this review, we reviewed the implication of RNA modification in FXS and summarized its specific characteristics for facilitating the identification of new therapeutic targets.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Transtorno do Espectro Autista/genética , RNA/metabolismo , Metilação , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
10.
Alzheimers Dement ; 19(11): 5074-5085, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37186161

RESUMO

INTRODUCTION: The prevalence and risk factors for subjective cognitive decline (SCD) and its correlation with objective cognition decline (OCD) among community-dwelling older adults is inconsistent. METHODS: Older adults underwent neuropsychological and clinical evaluations to reach a consensus on diagnoses. RESULTS: This study included 7486 adults without mild cognitive impairment and dementia (mean age: 71.35 years [standard deviation = 5.40]). The sex-, age-, and residence-adjusted SCD prevalence was 58.33% overall (95% confidence interval: 58.29% to 58.37%), with higher rates of 61.25% and 59.87% in rural and female subgroups, respectively. SCD global and OCD language, SCD memory and OCD global, SCD and OCD memory, and SCD and OCD language were negatively correlated in fully adjusted models. Seven health and lifestyle factors were associated with an increased risk for SCD. DISCUSSION: SCD affected 58.33% of older adults and may indicate concurrent OCD, which should prompt the initiation of preventative intervention for dementia. HIGHLIGHTS: SCD affects 58.33% of older adults in China. SCD may indicate concurrent objective cognitive decline. Difficulty finding words and memory impairments may indicate a risk for AD. The presence of SCD may prompt preventative treatment initiation of MCI or dementia. Social network factors may be initial targets for the early prevention of SCD.


Assuntos
Disfunção Cognitiva , Demência , Humanos , Feminino , Idoso , Estudos de Coortes , Prevalência , Vida Independente , Disfunção Cognitiva/psicologia , Cognição , Envelhecimento , Fatores de Risco , Demência/etiologia , Testes Neuropsicológicos
11.
Int J Biochem Cell Biol ; 158: 106394, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871937

RESUMO

Histone hypermethylation represses gene transcription, which affects cartilage homeostasis or joint remodeling. Trimethylation of lysine 27 of histone 3 (H3K27me3) changes epigenome signatures, regulating tissue metabolism. This study aimed to investigate whether loss of H3K27me3 demethylase Kdm6a function affected osteoarthritis development. We revealed that chondrocyte-specific Kdm6a knockout mice developed relatively long femurs and tibiae as compared to wild-type mice. Kdm6a deletion mitigated osteoarthritis symptoms, including articular cartilage loss, osteophyte formation, subchondral trabecular bone loss, and irregular walking patterns of destabilized medial meniscus-injured knees. In vitro, loss of Kdm6a function compromised the loss in expression of key chondrocyte markers Sox9, collagen II, and aggrecan and improved glycosaminoglycan production in inflamed chondrocytes. RNA sequencing showed that Kdm6a loss changed transcriptomic profiles, which contributed to histone signaling, NADPH oxidase, Wnt signaling, extracellular matrix, and cartilage development in articular cartilage. Chromatin immunoprecipitation sequencing uncovered that Kdm6a knockout affected H3K27me3 binding epigenome, repressing Wnt10a and Fzd10 transcription. Wnt10a was, among others, functional molecules regulated by Kdm6a. Forced Wnt10a expression attenuated Kdm6a deletion-induced glycosaminoglycan overproduction. Intra-articular administration with Kdm6a inhibitor GSK-J4 attenuated articular cartilage erosion, synovitis, and osteophyte formation, improving gait profiles of injured joints. In conclusion, Kdm6a loss promoted transcriptomic landscapes contributing to extracellular matrix synthesis and compromised epigenetic H3K27me3-mediated promotion of Wnt10a signaling, preserving chondrocytic activity to attenuate osteoarthritic degeneration. We highlighted the chondroprotective effects of Kdm6a inhibitor for mitigating the development of osteoarthritic disorders.


Assuntos
Cartilagem Articular , Osteoartrite , Osteófito , Animais , Camundongos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metilação de DNA , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/farmacologia , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Proteínas do Tecido Nervoso/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Osteófito/genética , Osteófito/metabolismo , Proteínas Wnt/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-36834327

RESUMO

Generation Z represents the young people of today. They are considered as "digitally literate" and were born between mid-to-late 1990s to early 2000s. Generation Z pays more attention to popular environmental issues such as global warming, high energy consumption, overgrazing, and university social responsibility (USR), which are present around the world. We formed a double moderated mediation exam from 910 college students in southeast China, used a new notion "green psychological capital", and proposed it as a vital mediator. In addition, we found that green organizational ambidexterity and environmental attitude are both boundary conditions in the green shared vision organizational citizenship behavior for the environment (OCBE) link. These findings have unlocked a deeper insight into Generation Z's green conception and offered a more comprehensive investigation on USR research. Furthermore, the amazing findings can provide a worldwide blueprint for USR studies in the long term.


Assuntos
Negociação , Responsabilidade Social , Humanos , Adolescente , Universidades , China , Atitude
13.
J Am Chem Soc ; 145(11): 6024-6028, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36840927

RESUMO

Among the various types of photomechanical deformations of organic crystals, photoinduced elongation of millimeter-scale crystals has yet to be demonstrated. Here we report that the millimeter-sized crystalline rods of an anthracene-pentiptycene hybrid organic π-system (1) are highly elastic and able to elongate up to 21.6% or 0.40 mm without fragmentation upon undergoing [4 + 4] photodimerization reactions. Both the mechanical and photomechanical effects reveal a strong cohesion of the system, even at the interface of 1 and its photodimer 2 and under the conditions of randomized molecular packing, representing a new class of mechanically adaptive organic crystals.

14.
Mol Neurobiol ; 60(5): 2539-2552, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36680734

RESUMO

Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and the most common cause of autism spectrum disorders. FXS patients exhibit severe syndromic features and behavioral alterations, including anxiety, hyperactivity, impulsivity, and aggression, in addition to cognitive impairment and seizures. At present, there are no effective treatments or cures for FXS. Previously, we have found the divergence of BDNF-TrkB signaling trajectories is associated with spine defects in early postnatal developmental stages of Fmr1 KO mice. Here, young fragile X mice were intraperitoneal injection with 7,8-Dihydroxyflavone (7,8-DHF), a high affinity tropomyosin receptor kinase B (TrkB) agonist. 7,8-DHF ameliorated morphological abnormities in dendritic spine and synaptic structure and rescued synaptic and hippocampus-dependent cognitive dysfunction. These observed improvements of 7,8-DHF involved decreased protein levels of BDNF, p-TrkBY816, p-PLCγ, and p-CaMKII in the hippocampus. In addition, 7,8-DHF intervention in primary hippocampal neurons increased p-TrkBY816 and activated the PLCγ1-CaMKII signaling pathway, leading to improvement of neuronal morphology. This study is the first to account for early life synaptic impairments, neuronal morphological, and cognitive delays in FXS in response to the abnormal BDNF-TrkB pathway. Present studies provide novel evidences about the effective early intervention in FXS mice at developmental stages and a strategy to produce powerful impacts on neural development, synaptic plasticity, and behaviors.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Síndrome do Cromossomo X Frágil , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/metabolismo , Receptor trkB/metabolismo , Tropomiosina/metabolismo
15.
Ann Surg Oncol ; 30(2): 1169-1181, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336733

RESUMO

BACKGROUND: To cure advanced hypopharyngeal squamous cell carcinoma (HPSCC), primary operation followed by adjuvant (chemo-)radiotherapy (OP-CRT) or definitive chemoradiation (CCRT) are the two primary options. This study aimed to compare the failure patterns and long-term survival outcomes of HPSCC patients treated with these two strategies. PATIENTS AND METHODS: From 2007 to 2015, 198 pathologically confirmed HPSCC patients receiving either OP-CRT or CCRT were retrospectively reviewed. Failure patterns and survival outcomes stratified by the 7th American Joint Committee on Cancer staging system and treatment modalities were compared. RESULTS: One hundred and eighty-nine patients (95.4%) were stage III/IV and 62 patients (31.3%) received OP-CRT. Median follow-up duration was 4.9 years. Compared with CCRT, OP-CRT provided better 3-year local relapse-free survival for T3 (93 vs 48%, p < 0.0001), T4a (88 vs 37%, p = 0.0005) and better 3-year regional relapse-free survival for N2b+2c (93 vs 60%, p < 0.0001). Of note, for stage IVA subjects, OP-CRT provided better 3-year loco-regional relapse-free survival (85 vs 37%, p < 0.0001), marginal poor 3-year distant metastasis-free survival (62 vs 79%, p = 0.06), but comparable 3-year OS (52 vs 44%, p = 0.37) and 5-year OS (44 vs 31%, p = 0.15) compared with CCRT. CONCLUSIONS: For patients with advanced HPSCC, although OP-CRT and CCRT provided similar overall survival, failure patterns were distinct. OP-CRT provided better loco-regional control but was more likely to encounter distant metastases than CCRT. The detailed analysis of failure patterns will pave the way to improve this devastating disease.


Assuntos
Neoplasias Hipofaríngeas , Humanos , Estudos Retrospectivos , Neoplasias Hipofaríngeas/cirurgia , Estadiamento de Neoplasias , Recidiva Local de Neoplasia/terapia , Quimiorradioterapia
17.
J Clin Biochem Nutr ; 71(3): 229-237, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36447490

RESUMO

Active ingredients in the natural products have been considered to be used for alleviating the symptoms of ulcerative colitis, hence the effects of Lycium barbarum polysaccharides (LP) and capsaicin on dextran sulfate sodium (DSS)-induced colitis in rats were investigated. Rats were grouped into normal, DSS induced colitis, and colitis treated with 100 mg LP/kg body weight, 12 mg capsaicin/kg body weight, or combined 50 mg LP/kg body weight and 6 mg capsaicin/kg body weight. Treatment with LP or capsaicin was orally fed by gavage for 4 weeks, and 5% DSS was fed via drinking water for 6 days during week 3. Colon tissue and cecum content were collected for analysis. Treatments with LP and/or capsaicin ameliorated disease activity index scores, severity of colon distortion, and shrinkage of colon length. LP and capsaicin decreased colonic pro-inflammatory cytokine (IFN-γ, IL-17A, and IL-22) levels. Cecal microbiota in colitis rats were enriched with the genus Turicibacter and Lachnospira. The relative abundance of genus Ruminiclostridium_9 and Ruminoclostridium_1 was increased by LP and capsaicin treatment, respectively. Pretreatment with LP or capsaicin inhibits the severity of colonic damage in rats with DSS-induced colitis via anti-inflammation and modulation of colonic microbiota.

18.
J Thorac Dis ; 14(9): 3415-3428, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36245605

RESUMO

Background: The peripheral blood gene expression profile of patients with coronary artery disease (CAD) has not been fully resolved. The aim of this study was to further analyze the peripheral blood transcriptome information of CAD patients and to uncover key genes and regulatory mechanisms in the pathogenesis and disease progression of CAD. Methods: The Gene Expression Omnibus (GEO) database was applied to screen out differentially expressed genes (DEGs) in the peripheral blood of CAD patients, and the DEGs were subjected to Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). The core genes were screened by GO, KEGG, and GSEA, and the gene-gene interaction (GGI) and protein-protein interaction (PPI) networks of DEGs were constructed. The GeneCards database was used to obtain CAD-related genes, and the GEO dataset was used to obtain intersecting genes. The intersecting genes were analyzed for bioenrichment and prediction of potential therapeutic agents, and predictive models were constructed for the intersecting genes. Finally, immune infiltrating cells from the GEO dataset were analyzed. Results: A total of 79 DEGs were screened in the peripheral blood of CAD patients, of which three were autophagy-related genes. Biological enrichment analysis showed that the DEGs were associated with metabolic pathways, and vascular smooth muscle contraction and were mainly involved the MAPK signaling pathway, metabolic pathways, and the PI3K-Akt signaling pathway. The S100A8, ENTPD1, and MMP9 further screened were screened. A total of 11 CAD crossover genes and 75 potential therapeutic agents were obtained, and the column line graph prediction models constructed for S100A8, HSPB1, F5, MMP9, and PDE9A had good predictive power. There were significant differences in immune cells in CAD patients compared to healthy individuals, especially in T cells regulatory (Tregs) and B cells naïve. Conclusions: The peripheral blood of CAD patients screened by the GEO dataset was significantly different from that of the healthy population, and the DEGs and intersecting genes were involved in numerous key biological processes that may be involved in the development and progression of CAD and could serve as its regulatory sites and therapeutic drug targets.

19.
Metabolism ; 135: 155269, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914621

RESUMO

BACKGROUND: Although the impact of hepatic androgen receptor (AR) pathway on liver pathogenesis was documented, its physiological function in normal liver is remained unclear. This study aims to investigate if hepatic AR acts on metabolism, the major liver function, using a hepatic-specific AR-transgenic (H-ARTG) mouse model. METHODS: We established the albumin promoter driven H-ARTG mice and included wild type (WT) and H-ARKO mice for study. The body weight, specific metabolic parameters and results from various tolerance tests were compared in different groups of mice fed a chow diet, from 2 to 18 months of age. Glucose feeding and insulin treatment were used to study the expression and zonal distribution pattern of AR and related genes in liver at different prandial stages. RESULTS: The body weight of H-ARTG mice fed a chow diet was 15 % lower than that of wild-type mice, preceded by lower blood glucose and liver triglyceride levels caused by AR reduced hepatic gluconeogenesis. The opposite phenotypes identified in H-ARKO and castrated H-ARTG mice support the critical role of activated AR in decreasing gluconeogenesis and triglyceride levels in liver. Hepatic AR acting by enhancing the expression of cytosolic glycerol-3-phosphate dehydrogenase (cGPDH), a key of glycerophosphate shuttle, was identified as one mechanism to decrease gluconeogenesis from glycerol. We further found AR normally expressed in zone 3 of hepatic lobules. Its level fluctuates dependent on the demand of glucose, decreased by fasting but increased by glucose uptake or insulin stimulation. CONCLUSION: AR is a newly identified zone 3 hepatic gene with function in reducing blood glucose and body weight in mice. It suggests that stabilization of hepatic AR is a new direction to prevent hyperglycemia, obesity and nonalcoholic fatty liver disease (NAFLD) in males.


Assuntos
Hiperglicemia , Insulinas , Animais , Glicemia/metabolismo , Gluconeogênese/genética , Glucose/metabolismo , Hepatócitos/metabolismo , Hiperglicemia/complicações , Hiperglicemia/genética , Hiperglicemia/prevenção & controle , Insulinas/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Triglicerídeos/metabolismo
20.
Int J Dev Neurosci ; 82(7): 557-568, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35870148

RESUMO

Fragile X syndrome (FXS) is a leading form of inherited intellectual disability and single-gene cause of autism spectrum disorder (ASD) and is characterized by core deficits in cognitive flexibility, sensory sensitivity, emotion, and social interactions. Motor deficits are a shared feature of FXS and autism. The cerebellum has emerged as one of the target brain areas affected by neurodevelopmental diseases. Alterations in the cerebellar structure, circuits, and function may be the key drivers of impaired fine and gross motor skills in FXS and fragile X-associated tremor/ataxia syndrome (FXTAS). In this review, we briefly examined recent findings in FXS and present a discussion on the literature supporting motor skill deficits in FXS. Subsequently, we focused on neuropathological alterations in the cerebellum in FXS and FXTAS. We highlight studies that have directly examined the function of fragile X mental retardation protein and related epigenetic variations in the cerebellum. Overall, we obtained considerable supporting evidence for the hypothesis that cerebellar dysfunction is evident in FXS and FXTAS; however, compared with studies on other ASD models, studies on motor skills related to fragile X disorders are particularly rare and inconclusive. Hence, future research should address FXS-related motor and behavioral trajectories and examine the underlying mechanisms at both the cell and circuit levels.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Humanos , Destreza Motora , Proteína do X Frágil da Deficiência Intelectual , Cerebelo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA