Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(23): e2401711, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38381000

RESUMO

Constructing an artificial solid electrolyte interphase (ASEI) on Li metal anodes (LMAs) is a potential strategy for addressing the dendrite issues. However, the mechanical fatigue of the ASEI caused by stress accumulation under the repeated deformation from the Li plating/stripping is not taken seriously. Herein, this work introduces a mechanically interlocked [an]daisy chain network (DCMIN) into the ASEI to stabilize the Li metal/ASEI interface by combining the functions of energy dissipation and fast Li-ion transport. The DCMIN featured by large-range molecular motions is cross-linked via efficient thiol-ene click chemistry; thus, the DCMIN has flexibility and excellent mechanical properties. As an ASEI, the crown ether units in DCMIN not only interact with the dialkylammonium of a flexible chain, forming the energy dissipation behavior but also coordinate with Li ion to support the fast Li-ion transport in DCMIN. Therefore, a stable 2800 h-symmetrical cycling (1 mA cm-2) and an excellent 5 C-rate (full cell with LiFePO4) performance are achieved by DCMIN-based ASEI. Furthermore, the 1-Ah pouch cell (LiNi0.88Co0.09Mn0.03O2 cathode) with DCMIN-coated LMA exhibits improved capacity retention (88%) relative to the Control. The molecular design of DCMIN provides new insights into the optimization of an ASEI for high-energy LMAs.

2.
Proc Natl Acad Sci U S A ; 120(51): e2314264120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100418

RESUMO

The separator with high Young's modulus can avoid the danger of large-sized dendrites, but regulating the chemical behavior of lithium (Li) at the separator/anode interface can effectively eliminate the dendrite issue. Herein, a polyimine aerogel (PIA) with accurate nitrogen (N) functional design is used as the functional separator in Li metal batteries to promote uniform Li nucleation and suppress the dendrite growth. Specifically, the imine (N1) and protonated tertiary amine (N2) sites in the molecular structure of the PIA are significantly different in electron cloud density (ECD) distribution. The N1 site with higher ECD and the N2 site with lower ECD tend to attract and repulse Li+ through electrostatic interactions, respectively. This synergy effect of the PIA separator accelerates the interfacial Li+ diffusion on the Li anode to sustain a uniform two-dimensional Li nucleation behavior. Meanwhile, the well-defined nanochannels of the PIA separator show high affinity to electrolyte and bring uniform Li+ flux for Li plating/stripping. Consequently, the dendrites are effectively suppressed by the PIA separator in routine carbonate electrolyte, and the Li metal batteries with the PIA separator exhibit high Coulombic efficiency and stable high-rate cycling. These findings demonstrate that the ingenious marriage of special chemical structure designs and hierarchical pores can enable the separator to affect the interfacial Li nucleation behavior.

3.
Nano Lett ; 23(20): 9609-9617, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843362

RESUMO

Lithium (Li) dendrite growth in a routine carbonate electrolyte (RCE) is the main culprit hindering the practical application of Li metal anodes. Herein, we realize the regulation of the LiPF6 decomposition pathway in RCE containing 1.0 M LiPF6 by introducing a "self-polymerizing" additive, ethyl isothiocyanate (EITC), resulting in a robust LiF-rich solid electrolyte interphase (SEI). The effect of 1 vol % EITC on the electrode/electrolyte interfacial chemistry slows the formation of the byproduct LixPOFy. Such a LiF-rich SEI with EITC polymer winding exhibits a high Young's modulus and a uniform Li-ion flux, which suppresses dendrite growth and interface fluctuation. The EITC-based Li metal cell using a Li4Ti5O12 cathode delivers a capacity retention of 81.4% over 1000 cycles at 10 C, outperforming its counterpart. The cycling stability of 1 Ah pouch cells was further evaluated under EITC. We believe that this work provides a new method for tuning the interfacial chemistry of Li metal through electrolyte additives.

4.
Angew Chem Int Ed Engl ; 62(34): e202306963, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37384426

RESUMO

Graphite anodes are prone to dangerous Li plating during fast charging, but the difficulty to identify the rate-limiting step has made a challenging to eliminate Li plating thoroughly. Thus, the inherent thinking on inhibiting Li plating needs to be compromised. Herein, an elastic solid electrolyte interphase (SEI) with uniform Li-ion flux is constructed on graphite anode by introducing a triglyme (G3)-LiNO3 synergistic additive (GLN) to commercial carbonate electrolyte, for realizing a dendrite-free and highly-reversible Li plating under high rates. The cross-linked oligomeric ether and Li3 N particles derived from the GLN greatly improve the stability of the SEI before and after Li plating and facilitate the uniform Li deposition. When 51 % of lithiation capacity is contributed from Li plating, the graphite anode in the electrolyte with 5 vol.% GLN achieved an average 99.6 % Li plating reversibility over 100 cycles. In addition, the 1.2-Ah LiFePO4 | graphite pouch cell with GLN-added electrolyte stably operated over 150 cycles at 3 C, firmly demonstrating the promise of GLN in commercial Li-ion batteries for fast-charging applications.

5.
Angew Chem Int Ed Engl ; 62(30): e202305723, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37285084

RESUMO

A stable solid electrolyte interphase (SEI) layer is crucial for lithium metal anode (LMA) to survive in long-term cycling. However, chaotic structures and chemical inhomogeneity of natural SEI make LMA suffering from exasperating dendrite growth and severe electrode pulverization, which hinder the practical application of LMAs. Here, we design a catalyst-derived artificial SEI layer with an ordered polyamide-lithium hydroxide (PA-LiOH) bi-phase structure to modulate ion transport and enable dendrite-free Li deposition. The PA-LiOH layer can substantially suppress the volume changes of LMA during Li plating/stripping cycles, as well as alleviate the parasitic reactions between LMA and electrolyte. The optimized LMAs demonstrate excellent stability in Li plating/stripping cycles for over 1000 hours at an ultra-high current density of 20 mA cm-2 in Li||Li symmetric cells. A high coulombic efficiency up to 99.2 % in Li half cells in additive-free electrolytes is achieved even after 500 cycles at a current density of 1 mA cm-2 with a capacity of 1 mAh cm-2 .

6.
Angew Chem Int Ed Engl ; 62(19): e202302285, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36896813

RESUMO

The difficulties to identify the rate-limiting step cause the lithium (Li) plating hard to be completely avoided on graphite anodes during fast charging. Therefore, Li plating regulation and morphology control are proposed to address this issue. Specifically, a Li plating-reversible graphite anode is achieved via a localized high-concentration electrolyte (LHCE) to successfully regulate the Li plating with high reversibility over high-rate cycling. The evolution of solid electrolyte interphase (SEI) before and after Li plating is deeply investigated to explore the interaction between the lithiation behavior and electrochemical interface polarization. Under the fact that Li plating contributes 40 % of total lithiation capacity, the stable LiF-rich SEI renders the anode a higher average Coulombic efficiency (99.9 %) throughout 240 cycles and a 99.95 % reversibility of Li plating. Consequently, a self-made 1.2-Ah LiNi0.5 Mn0.3 Co0.2 O2 | graphite pouch cell delivers a competitive retention of 84.4 % even at 7.2 A (6 C) after 150 cycles. This work creates an ingenious bridge between the graphite anode and Li plating, for realizing the high-performance fast-charging batteries.

7.
Natl Sci Rev ; 9(8): nwac097, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35992232

RESUMO

Traditional recycling processes of LiCoO2 rely on destructive decomposition, requiring high-temperature roasting or acid leaching to extract valuable Li and Co, which have significant environmental and economic concerns. Herein, a direct repairing method for degraded LiCoO2 using a LiCl-CH4N2O deep eutectic solvent (DES) was established. The DES is not used to dissolve LiCoO2 but directly serves as a carrier for the selective replenishment of lithium and cobalt. Replenishment of lithium restores LiCoO2 at different states of charge to a capacity of 130 mAh/g (at 0.1 C rate), while replenishing the cobalt increases the capacity retention rate of 90% after 100 cycles, which is comparable to pristine LiCoO2. The DES is collected and reused multiple times with a high repair efficiency. This process reduces energy consumption by 37.1% and greenhouse gas emissions by 34.8% compared with the current production process of LiCoO2, demonstrating excellent environmental and economic viability.

8.
Nanotechnology ; 32(47)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34462408

RESUMO

Lithium metal batteries (LMBs) have received extensive attention and research interest as high specific energy systems. However, the issues of Li dendrites growth in LMBs restrict their practical applications. The development of lithiophilic collectors can effectively solve the issues of Li dendrites growth. This study reports excellent lithium storage performance of lithiophilic nanosheet arrays which consist of electronic conductor Ni and ionic conductor Li2O (Ni-LONSs) on Ni foil (NF) fabricated via a simple preparation method for LMBs. The ionic conductor Li2O of the Ni-LONSs layer is lithiophilic and can induce uniform Li deposition on the Ni-LONSs collector. In addition, the nanosheet array structure of the Ni-LONSs collector is beneficial to slow down the volume change of the Li plating/stripping. In comparison with the NF collector, due to the specific nanosheet array structure of Ni-LONSs collector, the Ni-LONSs collector demonstrates excellent coulombic efficiency of 97.2% after 280 cycles (95.7% after 100 cycles of NF collector) and satisfactory cycling lifespan of 340 h (about 120 h of NF collector) at 0.5 mA cm-2with 1.0 mAh cm-2. Furthermore, the Ni-LONSs collector shows superior electrochemical performance in Ni-LONS/Li∣LiFePO4full cells. The excellent lithium storage performance of Ni-LONSs collector with mixed ionic/electronic conductor is conducive to the development and practical applications of LMBs.

9.
ACS Appl Mater Interfaces ; 11(41): 37726-37731, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31549805

RESUMO

Lithium metal anodes (LMAs) are critical for high-energy-density batteries such as Li-S and Li-O2 batteries. The spontaneously formed solid electrolyte interface on LMAs is fragile, which may not accommodate the cyclic Li plating/stripping. This usually will result in a low coulombic efficiency (CE), short cycle life, and potential safety hazards induced by the uncontrollable growth of lithium dendrites. In this study, we fabricate a Li alginate-based artificial SEI (ASEI) layer that is chemically stable and allows easy Li ion transport on the surface of LMAs, thus enabling the stable operation of lithium metal anodes. Compared to bare LMAs, the ASEI layer-protected LMAs exhibit a more stable Li plating/stripping behavior and present effective dendrite suppression. The symmetric Li∥Li cells with the ASEI layer-protected LMAs can stably run for 850 and 350 h at current densities of 0.5 and 1 mA cm-2, respectively. Additionally, the LiFePO4∥Li full cell with the ASEI layer-protected LMA exhibits a capacity retention of about 94.0% coupled with a CE of 99.6% after 1000 cycles at 4 C. We believe that this study of engineering an ASEI brings a new and promising approach to the stabilization of LMAs for high-performance lithium metal batteries.

10.
Chem Biol Interact ; 140(3): 199-213, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12204577

RESUMO

Inflamed tissues generate reactive nitrogen oxide species (RNO(x)), such as peroxynitrite (ONOO-)and nitryl chloride (NO2Cl), which lead to formation of nitrated DNA and protein adducts, including 8-nitroguanine (8NG), 8-nitroxanthine (8NX), and 3-nitrotyrosine (3NT). Once formed, the two nitrated DNA adducts are not stable in DNA and undergo spontaneous depurination. Nitration of protein tyrosine leads to inactivation of protein functions and 3NT has been detected in various disease states. We herein report that reduction of these nitro adducts to their corresponding amino analogues can be catalyzed by lipoyl dehydrogenases (EC 1.8.1.4) from Clostridium kluyveri (ck) and from porcine heart (ph) using NAD(P)H as the cofactor. We also found that dihydrolipoic acid (DHLA) and ubiquinol can be used as effective cofactors for reduction of 8NG, 8NX, and 3NT by these lipoyl dehydrogenases. The reduction efficiency of the mammalian enzyme is higher than the bacterial isozyme. The preference of cofactors by both lipoyl dehydrogenases is DHLA>NAD(P)H>ubiquinol. In all the systems examined, the nitrated purines are reduced to a greater extent than 3NT under the same conditions. We also demonstrate that this lipoyl dehydrogenase/antioxidant system is effective in reducing nitrated purine on NO2Cl-treated double stranded calf thymus DNA, and thus decreases apurinic site formation. The nitroreductase activity for lipoyl dehydrogenase might represent a possible metabolic pathway to reverse the process of biological nitration.


Assuntos
Di-Hidrolipoamida Desidrogenase/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Ácido Tióctico/análogos & derivados , Tirosina/análogos & derivados , Tirosina/metabolismo , Ubiquinona/análogos & derivados , Xantinas/metabolismo , NADP/metabolismo , Óxidos de Nitrogênio/metabolismo , Oxirredução , Espécies Reativas de Nitrogênio/metabolismo , Ácido Tióctico/metabolismo , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA