Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Heliyon ; 10(11): e31740, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845884

RESUMO

Optically pumped magnetometers (OPMs) have become a favorable tool for magnetoencephalography (MEG) measurement, offering a non-invasive method of measurement. OPMs do not require cryogenic environments, sensors can be more closely aligned with the brain. We employed a passive single-stimulus paradigm in conjunction with OPMs with a sensitivity of 20 fT/ Hz to investigate the auditory response of rats to inter-stimulus interval (ISI) and frequencies, recording the rat auditory event-related magnetic fields (ERMFs). Our findings include: (1) Auditory evoked fields can be detected non-invasively by OPMs; (2) The amplitude of the rat auditory ERMFs varies with changes in ISI, with more pronounced amplitude changes observed after 5 s; (3) When the sound stimulus frequency is altered at the same ISI, the amplitude of the rats ERMFs changes with frequency, indicating significant differences in attention. Our method offers a valuable tool for the clinical application of a single stimulus paradigm and opens up a new avenue for research on the brain magnetic field detections.

2.
PLoS Pathog ; 20(1): e1011958, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227600

RESUMO

Autophagy-related protein 7 (ATG7) is an essential autophagy effector enzyme. Although it is well known that autophagy plays crucial roles in the infections with various viruses including influenza A virus (IAV), function and underlying mechanism of ATG7 in infection and pathogenesis of IAV remain poorly understood. Here, in vitro studies showed that ATG7 had profound effects on replication of IAV. Depletion of ATG7 markedly attenuated the replication of IAV, whereas overexpression of ATG7 facilitated the viral replication. ATG7 conditional knockout mice were further employed and exhibited significantly resistant to viral infections, as evidenced by a lower degree of tissue injury, slower body weight loss, and better survival, than the wild type animals challenged with either IAV (RNA virus) or pseudorabies virus (DNA virus). Interestingly, we found that ATG7 promoted the replication of IAV in autophagy-dependent and -independent manners, as inhibition of autophagy failed to completely block the upregulation of IAV replication by ATG7. To determine the autophagy-independent mechanism, transcriptome analysis was utilized and demonstrated that ATG7 restrained the production of interferons (IFNs). Loss of ATG7 obviously enhanced the expression of type I and III IFNs in ATG7-depleted cells and mice, whereas overexpression of ATG7 impaired the interferon response to IAV infection. Consistently, our experiments demonstrated that ATG7 significantly suppressed IRF3 activation during the IAV infection. Furthermore, we identified long noncoding RNA (lncRNA) GAPLINC as a critical regulator involved in the promotion of IAV replication by ATG7. Importantly, both inactivation of IRF3 and inhibition of IFN response caused by ATG7 were mediated through control over GAPLINC expression, suggesting that GAPLINC contributes to the suppression of antiviral immunity by ATG7. Together, these results uncover an autophagy-independent mechanism by which ATG7 suppresses host innate immunity and establish a critical role for ATG7/GAPLINC/IRF3 axis in regulating IAV infection and pathogenesis.


Assuntos
Vírus da Influenza A , Influenza Humana , Viroses , Animais , Humanos , Camundongos , Imunidade Inata , Interferons , Replicação Viral
3.
Oncogene ; 42(47): 3514-3528, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845393

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype and accounts for approximately 15-20% of breast cancer cases. In this study, we identified KLHL29, which is an understudied member of the Kelch-like gene family, as a crucial tumor suppressor that regulates chemosensitivity in TNBC. KLHL29 expression was significantly downregulated in breast cancer tissues compared with adjacent normal tissues, and low levels of KLHL29 were associated with unfavorable prognoses. Ectopic KLHL29 suppressed, while depleting KLHL29 promoted, the growth, proliferation, migration, and invasion of TNBC. Mechanistically, KLHL29 recruited the CUL3 E3-ligase to the RNA-binding protein DDX3X, leading to the proteasomal degradation of the latter. This downregulation of DDX3X resulted in the destabilization of CCND1 mRNA and the consequent cell cycle arrest at G0/G1 phase. Remarkably, the DDX3X inhibitor RK33 combined with platinum-based chemotherapy can synergistically suppress TNBC that usually expresses low levels of KLHL29 and high levels of DDX3X using cancer cell-derived xenograft and patient-derived organoids models. Altogether, we uncovered the potential role for the KLHL29-DDX3X signaling cascade in the regulation of TNBC progression, thus providing a promising combination strategy for overcoming TNBC chemoresistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
4.
Viruses ; 15(8)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37632040

RESUMO

Effective viral clearance requires fine-tuned immune responses to minimize undesirable inflammatory responses. Circular RNAs (circRNAs) are a class of non-coding RNAs that are abundant and highly stable, formed by backsplicing pre-mRNAs, and expressed ubiquitously in eukaryotic cells, emerging as critical regulators of a plethora of signaling pathways. Recent progress in high-throughput sequencing has enabled a better understanding of the physiological and pathophysiological functions of circRNAs, overcoming the obstacle of the sequence overlap between circRNAs and their linear cognate mRNAs. Some viruses also encode circRNAs implicated in viral replication or disease progression. There is increasing evidence that viral infections dysregulate circRNA expression and that the altered expression of circRNAs is critical in regulating viral infection and replication. circRNAs were shown to regulate gene expression via microRNA and protein sponging or via encoding small polypeptides. Recent studies have also highlighted the potential role of circRNAs as promising diagnostic and prognostic biomarkers, RNA vaccines and antiviral therapy candidates due to their higher stability and lower immunogenicity. This review presents an up-to-date summary of the mechanistic involvement of circRNAs in innate immunity against viral infections, the current understanding of their regulatory roles, and the suggested applications.


Assuntos
RNA Circular , Viroses , Humanos , RNA Circular/genética , Imunidade Inata , Viroses/genética , Progressão da Doença , Células Eucarióticas
5.
Microbiol Spectr ; : e0363722, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847523

RESUMO

Circular RNAs (circRNAs) are an important subclass of noncoding RNAs implicated in the regulation of multiple biological processes. However, the functional involvement of circRNAs in the pathogenesis of influenza A viruses (IAVs) remains largely unknown. Here, we employed RNA sequencing (RNA-Seq) to examine the differentially expressed circRNAs in mouse lung tissues challenged or not challenged with IAV to evaluate the impact of viral infection on circRNAs in vivo. We observed that 413 circRNAs exhibited significantly altered levels following IAV infection. Among these, circMerTK, the derivative of myeloid-epithelial-reproductive tyrosine kinase (MerTK) pre-mRNA, was highly induced by IAV. Interestingly, circMerTK expression was also increased upon infection with multiple DNA and RNA viruses in human and animal cell lines, and thus it was selected for further studies. Poly(I:C) and interferon ß (IFN-ß) stimulated circMerTK expression, while RIG-I knockout and IFNAR1 knockout cell lines failed to elevate circMerTK levels after IAV infection, demonstrating that circMerTK is regulated by IFN signaling. Furthermore, circMerTK overexpression or silencing accelerated or impeded IAV and Sendai virus replication, respectively. Silencing circMerTK enhanced the production of type I IFNs and interferon-stimulating genes (ISGs), whereas circMerTK overexpression suppressed their expression at both the mRNA and protein levels. Notably, altering circMerTK expression had no effect on the MerTK mRNA level in cells infected or not infected with IAV, and vice versa. In addition, human circMerTK and mouse homologs functioned similarly in antiviral responses. Together, these results identify circMerTK as an enhancer of IAV replication through suppression of antiviral immunity. IMPORTANCE CircRNAs are an important class of noncoding RNAs characterized by a covalently closed circular structure. CircRNAs have been proven to impact numerous cellular processes, where they conduct specialized biological activities. In addition, circRNAs are believed to play a crucial role in regulating immune responses. Nevertheless, the functions of circRNAs in the innate immunity against IAV infection remain obscure. In this study, we employed transcriptomic analysis to investigate the alterations in circRNAs expression following IAV infection in vivo. It was found that expression of 413 circRNAs was significantly altered, of which 171 were upregulated, and 242 were downregulated following the IAV infection. Interestingly, circMerTK was identified as a positive regulator of IAV replication in both human and mouse hosts. CircMerTK was shown to influence IFN-ß production and its downstream signaling, enhancing IAV replication. This finding provides new insights into the critical roles of circRNAs in regulating antiviral immunity.

6.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36772132

RESUMO

An atomic magnetometer (AM) was used to non-invasively detect the tiny magnetic field generated by the brain of a single Drosophila. Combined with a visual stimulus system, the AM was used to study the relationship between visual salience and oscillatory activity of the Drosophila brain by analyzing changes in the magnetic field. Oscillatory activity of Drosophila in the 1-20 Hz frequency band was measured with a sensitivity of 20 fT/Hz. The field in the 20-30 Hz band under periodic light stimulation was used to explore the correlation between short-term memory and visual salience. Our method opens a new path to a more flexible method for the investigation of brain activity in Drosophila and other small insects.


Assuntos
Encéfalo , Drosophila , Animais , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Estimulação Luminosa/métodos
7.
mBio ; 13(6): e0251022, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36321836

RESUMO

MIR155HG encodes a precursor RNA of microRNA-155 (miRNA-155). We previously identified this RNA also as a long noncoding RNA (lncRNA) that we call lncRNA-155. To define the functions of miRNA-155 and lncRNA-155, we generated miRNA-155 knockout (KO) mice lacking only 19 bp of the miRNA-155 core sequence without affecting the expression of lncRNA-155. Surprisingly, compared with the miRNA-155KO mice, previously generated lncRNA-155KO mice were more susceptible to both influenza virus (RNA virus) and pseudorabies virus (DNA virus) infection, as characterized by lower survival rate, higher body weight loss, and higher viral load. We found that miRNA-155-5p enhanced antiviral responses by positively regulating activation of signal transducer and activator of transcription 1 (STAT1), but the STAT1 activity differed greatly in the animals (lncRNA-155KO < miRNA-155KO < wild type). In line with this, expression levels of several critical interferon-stimulated genes (ISGs) were also significantly different (lncRNA-155KO < miRNA-155KO < wild type). We found that lncRNA-155 augmented interferon beta (IFN-ß) production during the viral infection, but miRNA-155 had no significant effect on the virus-induced IFN-ß expression. Furthermore, we observed that lncRNA-155 loss in mice resulted in dramatic inhibition of virus-induced activation of interferon regulatory factor 3 compared to both miRNA-155KO and wild-type (WT) animals. Moreover, lncRNA-155 still significantly suppressed the viral infection even though the miRNA-155 derived from lncRNA-155 was deleted or blocked. These results reveal that lncRNA-155 and miRNA-155 regulate antiviral responses through distinct mechanisms, indicating a bivalent role for MIR155HG in innate immunity. IMPORTANCE Here, we found that lncRNA-155KO mice lacking most of the lncRNA-155 sequences along with pre-miRNA-155, were more susceptible to influenza virus or pseudorabies virus infection than miRNA-155KO mice lacking only 19 bp of the miRNA-155 core sequence without affecting the expression of lncRNA-155, as evidenced by faster body weight loss, poorer survival, and higher viral load, suggesting an additional role of lncRNA-155 in regulating viral pathogenesis besides via processing miRNA-155. Congruously, miRNA-155-deleted lncRNA-155 significantly attenuated the viral infection. Mechanistically, we demonstrated miRNA-155-5p potentiated antiviral responses by promoting STAT1 activation but could not directly regulate the IFN-ß expression. In contrast, lncRNA-155 enhanced virus-induced IFN-ß production by regulating the activation of interferon regulatory factor 3. This finding reveals a bivalent role of MIR155HG in regulating antiviral responses through encoding lncRNA-155 and miRNA-155-5p and provides new insights into complicated mechanisms underlying interaction between virus and host innate immunity.


Assuntos
MicroRNAs , RNA Longo não Codificante , Viroses , Vírus , Animais , Camundongos , Antivirais , RNA Longo não Codificante/genética , Fator Regulador 3 de Interferon/metabolismo , Replicação Viral/genética , Imunidade Inata/genética , Interferon beta/genética , MicroRNAs/genética , Vírus/genética , Redução de Peso
8.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3489-3500, 2022 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-36151816

RESUMO

Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro, but the in vivo function is poorly understood. In this study, via various experimental techniques such as hematoxylin-eosin (HE) staining, flow cytometry, Western blotting, and immunohistochemistry, we investigated the role of eIF4B in mouse embryo development using an eIF4B knockout (KO) mouse model and explored the mechanism. We found that the livers, but not lungs, brain, stomach, or pancreas, derived from eIF4B KO mouse embryos displayed severe pathological changes characterized by enhanced apoptosis and necrosis. Accordingly, high expression of cleaved-caspase 3, and excessive activation of mTOR signaling as evidenced by increased expression and phosphorylation of p70S6K and enhanced phosphorylation of 4EBP1, were observed in mouse embryonic fibroblasts and fetal livers from eIF4B KO mice. These results uncover a critical role of eIF4B in mouse embryo development and provide important insights into the biological functions of eIF4B in vivo.


Assuntos
Fibroblastos , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Apoptose/genética , Caspase 3 , Amarelo de Eosina-(YS) , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Hematoxilina , Fígado/metabolismo , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR
9.
Front Plant Sci ; 13: 848989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463417

RESUMO

Waterlogging (W-B) is a major abiotic stress during the growth cycle of maize production in Huang-huai-hai plain of China, threatening food security. A wide range of studies suggests that the application of 6-benzyladenine (6-BA) can mitigate the W-B effects on crops. However, the mechanisms underlying this process remain unclear. In this study, the application of 6-BA that effectively increased the yield of summer maize was confirmed to be related to the hormone and sugar metabolism. At the florets differentiation stage, application of 6-BA increased the content of trans-zeatin (TZ, + 59.3%) and salicylic acid (SA, + 285.5%) of ears to induce the activity of invertase, thus establishing sink strength. During the phase of sexual organ formation, the TZ content of ear leaves, spike nodes, and ears was increased by 24.2, 64.2, and 46.1%, respectively, in W-B treatment, compared with that of W. Accordingly, the sugar metabolism of summer maize was also improved. Therefore, the structure of the spike node was improved, promoting the translocation of carbon assimilations toward the ears and the development of ears and filaments. Thus the number of fertilized florets, grain number, and yield were increased by the application of 6-BA.

10.
J Virol ; 96(7): e0020022, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293768

RESUMO

Spleen tyrosine kinase (Syk) has recently come forth as a critical regulator of innate immune response. Previous studies identify Syk as a key kinase for STAT1 activation at the early stage of influenza A virus (IAV) infection that is involved in initial antiviral immunity. However, the involvement of Syk in host antiviral immunity during the late phase of IAV infection and its effect on pathogenesis of the virus remain unknown. Here, we found through time course studies that Syk restrained antiviral immune response at the late stage of IAV infection, thereby promoting viral replication. Depletion of Syk suppressed IAV replication in vitro, whereas ectopic expression of Syk facilitated viral replication. Moreover, Syk-deficient mice were employed, and we observed that knockout of Syk rendered mice more resistant to IAV infection, as evidenced by a lower degree of lung injury, slower body weight loss, and an increased survival rate of Syk knockout mice challenged with IAV. Furthermore, we revealed that Syk repressed the interferon response at the late stage of viral infection. Loss of Syk potentiated the expression of type I and III interferons in both Syk-depleted cells and mice. Mechanistically, Syk interacted with TBK1 and modulated its phosphorylation status, thereby impeding TBK1 activation and restraining innate immune signaling that governs interferon response. Together, these findings unveil a role of Syk in temporally regulating host antiviral immunity and advance our understanding of complicated mechanisms underlying regulation of innate immunity against viral invasion. IMPORTANCE Innate immunity must be tightly controlled to eliminate invading pathogens while avoiding autoimmune or inflammatory diseases. Syk is essential for STAT1 activation at the early stage of IAV infection, which is critical for initial antiviral responses. Surprisingly, here a time course study showed that Syk suppressed innate immunity during late phases of IAV infection and thereby promoted IAV replication. Syk deficiency enhanced the expression of type I and III interferons, inhibited IAV replication, and rendered mice more resistant to IAV infection. Syk impaired innate immune signaling through impeding TBK1 activation. These data reveal that Syk participates in the initiation of antiviral defense against IAV infection and simultaneously contributes to the restriction of innate immunity at the late stage of viral infection, suggesting that Syk serves a dual function in regulating antiviral responses. This finding provides new insights into complicated mechanisms underlying interaction between virus and host immune system.


Assuntos
Imunidade Inata , Vírus da Influenza A , Infecções por Orthomyxoviridae , Animais , Antivirais/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Interferons/metabolismo , Camundongos , Infecções por Orthomyxoviridae/enzimologia , Infecções por Orthomyxoviridae/imunologia , Quinase Syk/genética , Quinase Syk/imunologia , Replicação Viral
11.
Ann Transl Med ; 10(2): 93, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35282081

RESUMO

Background: The discordance of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 cell nuclear proliferation antigen status in patients with locally advanced breast cancer pre- and post-neoadjuvant chemotherapy (NAC) is quite common. This study aimed to assess the frequency of changes in receptor status after NAC in patients with invasive ductal breast cancer and the prognostic impact of such changes. Methods: The study comprised 670 patients who were diagnosed with invasive ductal breast carcinoma and treated with both NAC and surgery from 2012-2017. Hormone receptor (HR; including ER and PR), HER2, and Ki-67 status was assessed before NAC and in residual invasive tumor cells of the surgical specimens. The prognostic impact of receptor conversions in breast cancer patients treated with NAC was evaluated in this retrospective study. Results: The conversion of ER was related to overall survival (OS; P=0.008) and disease-free survival (DFS; P=0.004). Patients whose ER status was always positive had the best prognosis, and those who were always negative had the worst prognosis. Similar results were also found for PR status, as the conversion of PR status was also related to OS (P<0.001) and DFS (P<0.001). At the same time, the conversion of Ki-67 status was related to OS (P=0.042) and DFS (P=0.037), and patients whose Ki-67 status was ≤20% persistently after NAC had the best survival among the 4 groups, while those whose Ki-67 status changed from ≤20% to >20% after NAC had the worst survival. Nevertheless, there was no statistical significance in the conversion of HER2 status. In multivariate Cox regression analyses, PR conversion and post-neoadjuvant pathological lymph node stage (ypN) were independent prognostic factors for DFS (P=0.008, <0.001) and OS (P=0.002, <0.001). Conclusions: Changes in receptor status between pre-treatment and residual disease after NAC are common. Moreover, these alterations have an impact on the survival outcome of invasive ductal breast cancer patients. Thus, receptor status should be re-evaluated routinely before and after NAC to guide individualized treatment.

12.
Front Immunol ; 12: 723885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566982

RESUMO

Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro. However, its function in vivo is poorly understood. Here, we identified that eIF4B knockout (KO) in mice led to embryonic lethality, and the embryos displayed severe liver damage. Conditional KO (CKO) of eIF4B in adulthood profoundly increased the mortality of mice, characterized by severe pathological changes in several organs and reduced number of peripheral blood lymphocytes. Strikingly, eIF4B CKO mice were highly susceptible to viral infection with severe pulmonary inflammation. Selective deletion of eIF4B in lung epithelium also markedly promoted replication of influenza A virus (IAV) in the lung of infected animals. Furthermore, we observed that eIF4B deficiency significantly enhanced the expression of several important inflammation-associated factors and chemokines, including serum amyloid A1 (Saa1), Marco, Cxcr1, Ccl6, Ccl8, Ccl20, Cxcl2, Cxcl17 that are implicated in recruitment and activation of neutrophiles and macrophages. Moreover, the eIF4B-deficient mice exhibited impaired natural killer (NK) cell-mediated cytotoxicity during the IAV infection. Collectively, the results reveal that eIF4B is essential for mouse survival and host antiviral responses, and establish previously uncharacterized roles for eIF4B in regulating normal animal development and antiviral immunity in vivo.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/mortalidade , Biossíntese de Proteínas , Replicação Viral , Animais , Antivirais , Feminino , Interações Hospedeiro-Patógeno , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia
13.
Front Microbiol ; 12: 672026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239508

RESUMO

Viral infections can cause rampant disease in human beings, ranging from mild to acute, that can often be fatal unless resolved. An acute viral infection is characterized by sudden or rapid onset of disease, which can be resolved quickly by robust innate immune responses exerted by the host or, instead, may kill the host. Immediately after viral infection, elements of innate immunity, such as physical barriers, various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, provide the first line of defense for viral clearance. Innate immunity not only plays a critical role in rapid viral clearance but can also lead to disease progression through immune-mediated host tissue injury. Although elements of antiviral innate immunity are armed to counter the viral invasion, viruses have evolved various strategies to escape host immune surveillance to establish successful infections. Understanding complex mechanisms underlying the interaction between viruses and host's innate immune system would help develop rational treatment strategies for acute viral infectious diseases. In this review, we discuss the pathogenesis of acute infections caused by viral pathogens and highlight broad immune escape strategies exhibited by viruses.

14.
J Virol ; 95(21): e0027721, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34287042

RESUMO

Long noncoding RNAs (lncRNAs) are involved in numerous cellular processes. Increasing evidence suggests that some lncRNAs function in immunity through various complex mechanisms. However, implication of a large fraction of lncRNAs in antiviral innate immunity remains uncharacterized. Here, we identified an lncRNA called lncRNA IFITM4P that was transcribed from interferon-induced transmembrane protein 4 pseudogene (IFITM4P), a pseudogene belonging to the interferon-induced transmembrane protein (IFITM) family. We found that expression of lncRNA IFITM4P was significantly induced by infection with several viruses, including influenza A virus (IAV). Importantly, lncRNA IFITM4P acted as a positive regulator of innate antiviral immunity. Ectopic expression of lncRNA IFITM4P significantly suppressed IAV replication in vitro, whereas IFITM4P deficiency promoted viral production. We further observed that expression of lncRNA IFITM4P was upregulated by interferon (IFN) signaling during viral infection, and altering the expression of this lncRNA had significant effects on the mRNA levels of several IFITM family members, including IFITM1, IFITM2, and IFITM3. Moreover, lncRNA IFITM4P was identified as a target of the microRNA miR-24-3p, which represses mRNA of IFITM1, IFITM2, and IFITM3. The experiments demonstrated that lncRNA IFITM4P was able to cross-regulate the expression of IFITM family members as a competing endogenous RNA (ceRNA), leading to increased stability of these IFITM mRNAs. Together, our results reveal that lncRNA IFITM4P, as a ceRNA, is involved in innate immunity against viral infection through the lncRNA IFITM4P-miR-24-3p-IFITM1/2/3 regulatory network. IMPORTANCE lncRNAs play important roles in various biological processes, but their involvement in host antiviral responses remains largely unknown. In this study, we revealed that the pseudogene IFITM4P belonging to the IFITM family can transcribe a functional long noncoding RNA termed lncRNA IFITM4P. Importantly, results showed that lncRNA IFITM4P was involved in innate antiviral immunity, which resembles some interferon-stimulated genes (ISGs). Furthermore, lncRNA IFITM4P was identified as a target of miR-24-3p and acts as a ceRNA to inhibit the replication of IAV through regulating the mRNA levels of IFITM1, IFITM2, and IFITM3. These data provide new insight into the role of a previously uncharacterized lncRNA encoded by a pseudogene in the host antiviral response and a better understanding of the IFITM antiviral network.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Proteínas de Membrana/genética , RNA Longo não Codificante/genética , Células A549 , Animais , Cães , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus da Influenza A/genética , Interferons/genética , Células K562 , Células Madin Darby de Rim Canino , Proteínas de Membrana/imunologia , RNA Longo não Codificante/imunologia , Transdução de Sinais , Replicação Viral
15.
Front Immunol ; 12: 672165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054851

RESUMO

Influenza A virus (IAV), a highly infectious respiratory pathogen, remains a major threat to global public health. Numerous long non-coding RNAs (lncRNAs) have been shown to be implicated in various cellular processes. Here, we identified a new lncRNA termed RIG-I-dependent IAV-upregulated noncoding RNA (RDUR), which was induced by infections with IAV and several other viruses. Both in vitro and in vivo studies revealed that robust expression of host RDUR induced by IAV was dependent on the RIG-I/NF-κB pathway. Overexpression of RDUR suppressed IAV replication and downregulation of RDUR promoted the virus replication. Deficiency of mouse RDUR increased virus production in lungs, body weight loss, acute organ damage and consequently reduced survival rates of mice, in response to IAV infection. RDUR impaired the viral replication by upregulating the expression of several vital antiviral molecules including interferons (IFNs) and interferon-stimulated genes (ISGs). Further study showed that RDUR interacted with ILF2 and ILF3 that were required for the efficient expression of some ISGs such as IFITM3 and MX1. On the other hand, we found that while NF-κB positively regulated the expression of RDUR, increased expression of RDUR, in turn, inactivated NF-κB through a negative feedback mechanism to suppress excessive inflammatory response to viral infection. Together, the results demonstrate that RDUR is an important lncRNA acting as a critical regulator of innate immunity against the viral infection.


Assuntos
Imunidade Inata/imunologia , NF-kappa B/imunologia , Infecções por Orthomyxoviridae/imunologia , RNA Longo não Codificante/imunologia , Animais , Linhagem Celular , Proteína DEAD-box 58/imunologia , Retroalimentação Fisiológica , Humanos , Vírus da Influenza A , Influenza Humana/imunologia , Camundongos , Receptores Imunológicos/imunologia
16.
Cell Rep ; 34(3): 108627, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472080

RESUMO

The JAK/STAT1 pathway is generally activated by cytokines, providing essential antiviral defense. Here, we identify that STAT1 activation is independent of cytokines and JAKs at the early infection stage of some viruses, including influenza A virus (IAV). Instead, STAT1 is activated mainly through spleen tyrosine kinase (Syk) downstream of retinoic acid-inducible gene-I/mitochondrial antiviral-signaling protein (RIG-I/MAVS) signaling. Syk deletion profoundly impairs immediate innate immunity, as evidenced by the finding that Syk deletion attenuates tyrosine phosphorylation of STAT1 and reduces the expressions of interferon-stimulated genes (ISGs) in vitro and in vivo. The antiviral response to IAV infection is also significantly suppressed in the STAT1Y701F knockin mice. The results demonstrate that STAT1 activation is dependent on Syk rather than the cytokine-activated JAK signaling at the early stage of viral infection, which is critical for initial antiviral immunity. Our finding provides insights into the complicated mechanisms underlying host immune responses to viral infection.


Assuntos
Imunidade Inata/imunologia , Fator de Transcrição STAT1/imunologia , Quinase Syk/imunologia , Viroses/imunologia , Animais , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fosforilação , Quinase Syk/metabolismo , Células Vero
17.
Cell Microbiol ; 22(11): e13242, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32596986

RESUMO

Influenza A virus (IAV) infection regulates the expression of numerous host genes. However, the precise mechanism underlying implication of these genes in IAV pathogenesis remains largely unknown. Here, we employed isobaric tags for relative and absolute quantification (iTRAQ) to identify host proteins regulated by IAV infection. iTRAQ analysis of mouse lungs infected or uninfected with IAV showed a total of 167 differentially upregulated proteins in response to the viral infection. Interestingly, we observed that p27Kip1, a potent cyclin-dependent kinase inhibitor, was markedly induced by IAV both at mRNA and protein levels through in vitro and in vivo studies. Furthermore, it was shown that innate immune signalling positively regulated p27Kip1 expression in response to IAV infection. Ectopic expression of p27Kip1 in A549 cells dramatically inhibited IAV replication, whereas, p27Kip1 knockdown significantly enhanced the virus replication. in vivo experiments demonstrated that p27Kip1 knockout (KO) mice were more susceptible to IAV than wild-type (WT) mice: exhibiting higher viral load in lung tissue, faster body-weight loss, reduced survival rate and more severe organ damage. Moreover, we found that p27Kip1 overexpression facilitated the degradation of viral NS1 protein, caused a dramatic STAT1 activation and promoted the expression of IFN-ß and several critical antiviral interferon-stimulated genes (ISGs). Increased p27Kip1 expression also restricted infections of several other viruses. Conversely, IAV-infected p27Kip1 KO mice exhibited a sharp increase in NS1 protein accumulation, reduced level of STAT1 activation and decreased expression of IFN-ß and the ISGs in the lung compared to WT animals. These findings reveal a key role of p27Kip1 in enhancing antiviral innate immunity.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/genética , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Regulação para Cima , Proteínas não Estruturais Virais/metabolismo , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia , Replicação Viral
18.
Int J Mol Sci ; 20(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623059

RESUMO

Long noncoding RNAs (lncRNAs) are involved in a diversity of biological processes. It is known that differential expression of thousands of lncRNAs occurs in host during influenza A virus (IAV) infection. However, only few of them have been well characterized. Here, we identified a lncRNA, named as interferon (IFN)-stimulated lncRNA (ISR), which can be significantly upregulated in response to IAV infection in a mouse model. A sequence alignment revealed that lncRNA ISR is present in mice and human beings, and indeed, we found that it was expressed in several human and mouse cell lines and tissues. Silencing lncRNA ISR in A549 cells resulted in a significant increase in IAV replication, whereas ectopic expression of lncRNA ISR reduced the viral replication. Interestingly, interferon-ß (IFN-ß) treatment was able to induce lncRNA ISR expression, and induction of lncRNA ISR by viral infection was nearly abolished in host deficient of IFNAR1, a type I IFN receptor. Furthermore, the level of IAV-induced lncRNA ISR expression was decreased either in retinoic acid-inducible gene I (RIG-I) knockout A549 cells and mice or by nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) inhibitor treatment. Together, these data elucidate that lncRNA ISR is regulated by RIG-I-dependent signaling that governs IFN-ß production during IAV infection, and has an inhibitory capacity in viral replication.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/fisiologia , Influenza Humana/genética , Influenza Humana/virologia , Interferons/farmacologia , RNA Longo não Codificante/genética , Replicação Viral , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/virologia
19.
Front Immunol ; 10: 1843, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474976

RESUMO

Influenza A virus (IAV) remains a major public health threat in the world, as indicated by the severe pneumonia caused by its infection annually. Interleukin-6 (IL-6) involved excessive inflammatory response to IAV infection profoundly contributes to the virus pathogenesis. However, the precise mechanisms underlying such a response are poorly understood. Here we found from both in vivo and in vitro studies that IAV not only induced a surge of IL-6 release, but also greatly upregulated expression of suppressor of cytokine signaling-3 (SOCS3), the potent suppressor of IL-6-associated signal transducer and activator of transcription 3 (STAT3) signaling. Interestingly, there existed a cytokine-independent mechanism of the robust induction of SOCS3 by IAV at early stages of the infection. Furthermore, we employed SOCS3-knockdown transgenic mice (TG), and surprisingly observed from virus challenge experiments using these mice that disruption of SOCS3 expression provided significant protection against IAV infection, as evidenced by attenuated acute lung injury, a higher survival rate of infected animals and lower viral load in infected tissues as compared with those of wild-type littermates under the same condition. The activity of nuclear factor-kappa B (NFκB) and the expression of its target gene IL-6 were suppressed in SOCS3-knockdown A549 cells and the TG mice after infection with IAV. Moreover, we defined that enhanced STAT3 activity caused by SOCS3 silencing was important for the regulation of NFκB and IL-6. These findings establish a critical role for IL-6-STAT3-SOCS3 axis in the pathogenesis of IAV and suggest that influenza virus may have evolved a strategy to circumvent IL-6/STAT3-mediated immune response through upregulating SOCS3.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/patologia , Interleucina-6/metabolismo , Infecções por Orthomyxoviridae/patologia , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Células A549 , Lesão Pulmonar Aguda/prevenção & controle , Animais , Linhagem Celular Tumoral , Cães , Feminino , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética
20.
Nat Microbiol ; 4(10): 1750-1759, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209309

RESUMO

The influenza virus polymerase uses capped RNA primers to initiate transcription, and a combination of terminal and internal de novo initiations for the two-step replication process by binding the conserved viral genomic RNA (vRNA) or complementary RNA (cRNA) promoter. Here, we determined the apo and promoter-bound influenza D polymerase structures using cryo-electron microscopy and found the polymerase has an evolutionarily conserved stable core structure with inherently flexible peripheral domains. Strikingly, two conformations (mode A and B) of the vRNA promoter were observed where the 3'-vRNA end can bind at two different sites, whereas the cRNA promoter only binds in the mode B conformation. Functional studies confirmed the critical role of the mode B conformation for vRNA synthesis via the intermediate cRNA but not for cRNA production, which is mainly regulated by the mode A conformation. Both conformations participate in the regulation of the transcription process. This work advances our understanding of the regulatory mechanisms for the synthesis of different RNA species by influenza virus polymerase and opens new opportunities for antiviral drug design.


Assuntos
RNA Viral/biossíntese , RNA Viral/química , RNA Polimerase Dependente de RNA/metabolismo , Thogotovirus/enzimologia , Microscopia Crioeletrônica , Modelos Biológicos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , RNA Complementar/biossíntese , RNA Complementar/química , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Thogotovirus/ultraestrutura , Transcrição Gênica , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA