Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 26(1): 105770, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590161

RESUMO

Lichens are well known as pioneer organisms or stress-tolerant extremophiles, potentially playing a core role in the early formation of terrestrial ecosystems. Epiphytic macrolichens are known to contribute to the water- and nutrient cycles in forest ecosystem. But due to the scarcity of fossil record, the evolutionary history of epiphytic macrolichens is poorly documented. Based on new fossil of Jurassic Daohugouthallus ciliiferus, we demonstrate the hitherto oldest known macrolichen inhabited a gymnosperm branch. We applied energy dispersive X-ray spectroscopy and geometric morphometric analysis to complementarily verify lichen affinity of D. ciliiferus and quantitatively assess the potential relationships with extant lichenized lineages, providing new approaches for study of this lichen adpression fossil. Considering the results, and the inferred age of D. ciliiferus, a new family, Daohugouthallaceae, is established. This work updates current knowledge to the early evolution of epiphytic macrolichens and reveals more complex lichen-plant interactions in a Jurassic forest ecosystem.

2.
Nanoscale ; 14(21): 7906-7912, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593108

RESUMO

Triboelectric nanogenerator (TENG) as a new energy harvester has attracted significant attention due to its excellent output performance and high energy conversion efficiency at low-frequency, small-amplitude and weak-force compared with a traditional electromagnetic generator. Here, an ultraweak mechanical stimuli actuated single electrode triboelectric nanogenerator (UMA-TENG) has been studied with an atomic force microscope. The electrical output and force curve of UMA-TENG were studied at first, as well as the maximum output performance and highest energy conversion efficiency. Then the influence of the driving frequency, separation distance and motion amplitude was investigated, respectively. Moreover, by introducing an external switch to reach a cycle of maximized energy output, the maximum energy conversion efficiency of the UMA-TENG was up to 73.6% with an input mechanical energy of 48 pJ. This work demonstrates that the TENG shows excellent performance in ultraweak mechanical stimuli and could broaden the applications of the TENG in sensors, actuators, micro-robotics, micro-electro-mechanical-systems, and wearable electronics.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35575638

RESUMO

The semiconductor triboelectric nanogenerator (TENG) based on the tribovoltaic effect has the characteristics of direct current and high current density, but the energy transfer and conversion mechanism is not completely clear. Here, a series of gallium nitride (GaN)-based semiconductor direct-current TENGs (SDC-TENGs) are investigated for clarifying the carrier excitation and transport mechanism. During the friction process, the external output current always flows from GaN to silicon or aluminum, regardless of the direction of the built-in electric field, because of the semiconductor types. These results reveal that the carrier transport direction is dominated by the interfacial electric field formed by triboelectrification, which is also verified under different bias voltages. Moreover, the characteristics dependent on the frictional force have been systematically investigated under different normal forces and frictional modes. The open-circuit voltage and short-circuit current of SDC-TENG are both increased with a larger frictional force, which shows that the more severe friction results in both a larger interface electric field and more excited carriers. The maximum voltage can reach 25 V for lighting up a series of LEDs, which is enhanced by four times compared to the cutting-edge reported SDC-TENGs. This work has clarified the friction-dominated carrier excitation and transport mechanism for the tribovoltaic effect, which demonstrates the great potential of semiconductor materials for frictional energy recovery and utilization.

4.
Adv Mater ; 34(20): e2200146, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35291054

RESUMO

The semiconductor direct-current triboelectric nanogenerator (SDC-TENG) based on the tribovoltaic effect is promising for developing a new semiconductor energy technology with high power density. Here, the first SDC-TENG built using gallium nitride (GaN) and bismuth telluride (Bi2 Te3 ) for ultrahigh-power generation is reported. During the friction process, an additional interfacial electric field is formed by continuous contact electrification (CE), and abundant electron-hole pairs are excited and move directionally to form a junction current that is always internally from Bi2 Te3 to GaN, regardless of the semiconductor type. The peak open-circuit voltage can reach up to 40 V and the power density is 11.85 W m-2 (average value is 9.23 W m-2 ), which is approximately 200 times higher than that of previous centimeter-level SDC-TENGs. Moreover, compared to traditional polymer TENGs under the same conditions, the average power density is remarkably improved by over 40 times. This study provides the first evidence of CE on the tribovoltaic effect and sets the normalized power density record for TENGs, which demonstrates a great potential of the tribovoltaic effect for energy harvesting and sensing.

5.
Sensors (Basel) ; 22(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35161870

RESUMO

Optical fibers are being widely utilized as radiation sensors and dosimeters. Benefiting from the rapidly growing optical fiber manufacturing and material engineering, advanced optical fibers have evolved significantly by using functional structures and materials, promoting their detection accuracy and usage scenarios as radiation sensors. This paper summarizes the current development of optical fiber-based radiation sensors. The sensing principles of both extrinsic and intrinsic optical fiber radiation sensors, including radiation-induced attenuation (RIA), radiation-induced luminescence (RIL), and fiber grating wavelength shifting (RI-GWS), were analyzed. The relevant advanced fiber materials and structures, including silica glass, doped silica glasses, polymers, fluorescent and scintillator materials, were also categorized and summarized based on their characteristics. The fabrication methods of intrinsic all-fiber radiation sensors were introduced, as well. Moreover, the applicable scenarios from medical dosimetry to industrial environmental monitoring were discussed. In the end, both challenges and perspectives of fiber-based radiation sensors and fiber-shaped radiation dosimeters were presented.


Assuntos
Fibras Ópticas , Radiometria , Vidro , Luminescência , Dosímetros de Radiação
6.
Front Optoelectron ; 15(1): 34, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36637692

RESUMO

Magnetic field sensing plays an important role in many fields of scientific research and engineering applications. Benefiting from the advantages of optical fibers, the optical fiber-based magnetic field sensors demonstrate characteristics of light weight, small size, remote controllability, reliable security, and wide dynamic ranges. This paper provides an overview of the basic principles, development, and applications of optical fiber magnetic field sensors. The sensing mechanisms of fiber grating, interferometric and evanescent field fiber are discussed in detail. Magnetic fluid materials, magneto-strictive materials, and magneto-optical materials used in optical fiber sensing systems are also introduced. The applications of optical fiber magnetic field sensors as current sensors, geomagnetic monitoring, and quasi-distributed magnetic sensors are presented. In addition, challenges and future development directions are analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA