Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Burns Trauma ; 12: tkad060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585341

RESUMO

Acne is a common chronic inflammatory dermatosis that can lead to pathological scars (PSs, divided into hypertrophic scars and keloids). These kinds of abnormal scars seriously reduce the quality of life of patients. However, their mechanism is still unclear, resulting in difficult clinical prevention, unstable treatment effects and a high risk of recurrence. Available evidence supports inflammatory changes caused by infection as one of the keys to abnormal proliferation of skin fibroblasts. In acne-induced PSs, increasing knowledge of the immunopathology indicates that inflammatory cells directly secrete growth factors to activate fibroblasts and release pro-inflammatory factors to promote the formation of PSs. T helper cells contribute to PSs via the secretion of interleukin (IL)-4 and IL-13, the pro-inflammatory factors; while regulatory T cells have anti-inflammatory effects, secrete IL-10 and prostaglandin E2, and suppress fibrosis production. Several treatments are available, but there is a lack of combination regimens to target different aspects of acne-induced PSs. Overall, this review indicates that the joint involvement of inflammatory response and fibrosis plays a crucial role in acne-induced PSs, and also analyzes the interaction of current treatments for acne and PS.

2.
RSC Adv ; 14(15): 10714-10725, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38567330

RESUMO

Conventional Au nanomaterial synthesis typically necessitates the involvement of extensive surfactants and reducing agents, leading to a certain amount of chemical waste and biological toxicity. In this study, we innovatively employed ultra-small graphene oxide as a reducing agent and surfactant for the in situ generation of small Au nanoparticles under ultraviolet irradiation (UV) at ambient conditions. After ultra-small GO-Au seeds were successfully synthesized, we fabricated small star-like Au nanoparticles on the surface of GO, in which GO effectively prevented Austar from aggregation. To further use GO-Austar for cancer PTT therapy, through the modification of reduced human serum albumin-folic acid conjugate (rHSA-FA) and loading IR780, the final probe GO-Austar@rHSA-FA@IR780 was prepared. The prepared probe showed excellent biocompatibility and superb phototoxicity towards MGC-803 cells in vitro. In vivo, the final probe dramatically increased tumor temperature up to 58.6 °C after 5 minutes of irradiation by an 808 nm laser, significantly inhibiting tumor growth and nearly eradicating subcutaneous tumors in mice. This research provides a novel and simple method for the synthesis of GO-Au nanocomposites, showcasing significant potential in biological applications.

3.
ACS Appl Mater Interfaces ; 16(7): 8554-8569, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323816

RESUMO

Optical imaging and spectroscopic modalities are of considerable current interest for in vivo cancer detection and image-guided surgery, but the turbid or scattering nature of biomedical tissues has severely limited their abilities to detect buried or occluded tumor lesions. Here we report the development of a dual-modality plasmonic nanostructure based on colloidal gold nanostars (AuNSs) for simultaneous surface-enhanced Raman scattering (SERS) and photoacoustic (PA) detection of tumor phantoms embedded (hidden) in ex vivo animal tissues. By using red blood cell membranes as a naturally derived biomimetic coating, we show that this class of dual-modality contrast agents can provide both Raman spectroscopic and PA signals for the detection and differentiation of hidden solid tumors with greatly improved depths of tissue penetration. Compared to previous polymer-coated AuNSs, the biomimetic coatings are also able to minimize protein adsorption and cellular uptake when exposed to human plasma without compromising their SERS or PA signals. We further show that tumor-targeting peptides (such as cyclic RGD) can be noncovalently inserted for targeting the ανß3-integrin receptors expressed on metastatic cancer cells and tracked via both SERS and PA imaging (PAI). Finally, we demonstrate image-guided resections of tumor-mimicking phantoms comprising metastatic tumor cells buried under layers of skin and fat tissues (6 mm in thickness). Specifically, PAI was used to determine the precise tumor location, while SERS spectroscopic signals were used for tumor identification and differentiation. This work opens the possibility of using these biomimetic dual-modality nanoparticles with superior signal and biological stability for intraoperative cancer detection and resection.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias , Animais , Humanos , Meios de Contraste , Análise Espectral Raman/métodos , Biomimética , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Nanopartículas Metálicas/química
4.
J Glob Antimicrob Resist ; 36: 379-388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307252

RESUMO

OBJECTIVES: We characterized the population structure and features of clinical Streptococcus pneumoniae isolates associated with invasive pneumococcal disease (IPD) from 2009 to 2017 in a Chinese metropolitan city using a whole-genome sequencing approach. METHODS: Seventy-nine pneumococcal strains, including 60 serogroup-19 strains from children enduring IPD from a paediatric hospital in Shenzhen, were subjected to whole-genome sequencing. Population structure was characterized through phylogenetic analysis, sequence typing, serotyping, virulence factor, and antimicrobial drug resistance (AMR) gene profiling, combining the publicly available related WGS data. Clinical demography and antibiotic susceptibility profiles were compared among different populations to emphasize the higher-risk populations. Genetic regions associated with AMR gene mobilization were identified through comparative genomics. RESULTS: These IPD strains mainly belonged to clonal complex 320 (CC320) and were composed of serotypes 19A and 19F. In addition to sporadic possible importation-related isolates (ST320), we identified an independent clade, CC320_SZpop (ST271), that predominantly circulated in Shenzhen and possibly expanded its range. Clinical features and antibiotic susceptibility analysis revealed that CC320_SZpop might manifest much higher pathogenicity and tolerance to ß-lactams. Specific virulence factors in Shenzhen isolates of CC320_SZpop were identified. Furthermore, an ca. 40 kb hotspot genomic region enduring frequent recombination was identified, possibly associated with the divergence of S. pneumoniae strains. CONCLUSION: A novel pneumococcal clade, CC320_SZpop, circulating in Shenzhen and other regions in China, possibly under expansion, was found and deserves more study and surveillance. Our study also emphasizes the importance of continuous genomic surveillance of clinical S. pneumoniae isolates, especially IPD isolates.


Assuntos
Infecções Pneumocócicas , Transtornos Relacionados ao Uso de Substâncias , Criança , Humanos , Streptococcus pneumoniae , Antibióticos beta Lactam , Filogenia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Infecções Pneumocócicas/epidemiologia , Monobactamas , China/epidemiologia
5.
J Glob Antimicrob Resist ; 36: 399-406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266961

RESUMO

OBJECTIVES: This study aimed to evaluate the molecular epidemiology and antimicrobial resistance of invasive pneumococcal isolates from children in Shenzhen, China, in the early stage of the pneumococcal 13-valent conjugated vaccine (PCV-13) era from 2018 to 2020. METHODS: Invasive pneumococcal strains were isolated from hospitalized children with invasive pneumococcal diseases (IPDs) from January 2018 to December 2020. The serotype identification, multilocus sequence typing (MLST), and antibiotic susceptibility tests were performed on all culture-confirmed strains. RESULTS: Sixty-four invasive strains were isolated mainly from blood (70.3%). Prevalent serotypes were 23F (28.1%), 14 (18.8%), 19F (15.6%), 6A/B (14.1%), and 19A (12.5%), with a serotype coverage rate of 96.9% for PCV13. The most common sequence types (STs) were ST876 (17.1%), ST271 (10.9%), and ST320 (7.8%). Half of the strains were grouped in clonal complexes (CCs): CC271 (21.9%), CC876 (20.3%), and CC90 (14.1%). Meningitis isolates showed a higher resistance rate (90.9% and 45.5%) to penicillin and ceftriaxone than the rate (3.8% and 9.4%) of non-meningitis isolates. The resistance rates for penicillin (oral), cefuroxime, and erythromycin were 53.13%, 73.4%, and 96.9%, respectively. The dual ermB and mefA genotype was found in 81.3% of erythromycin-resistant strains. The elevated minimum inhibitory concentration (MIC) of ß-lactam antibiotics and dual-genotype macrolide resistance were related mainly to three major serotype-CC combinations: 19F-CC271, 19A-CC271, and 14-CC876. CONCLUSION: Invasive pneumococcus with elevated MICs of ß-lactams and increased dual ermB and mefA genotype macrolide resistance were alarming. Expanded PCV13 vaccination is expected to reduce the burden of paediatric IPD and to combat antibiotic-resistant pneumococcus in Shenzhen.


Assuntos
Antibacterianos , Streptococcus pneumoniae , Criança , Humanos , Antibacterianos/farmacologia , Vacinas Conjugadas/farmacologia , Tipagem de Sequências Multilocus , Sorotipagem , Farmacorresistência Bacteriana , Macrolídeos/farmacologia , China/epidemiologia , Eritromicina/farmacologia , Penicilinas/farmacologia
6.
Adv Sci (Weinh) ; 11(7): e2305468, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064170

RESUMO

Hypertrophic scar (HS), which results from prolonged inflammation and excessive fibrosis in re-epithelialized wounds, is one of the most common clinical challenges. Consequently, sophisticated transdermal transfersome nanogels (TA/Fu-TS) are prepared to control HS formation by synergistically inhibiting inflammation and suppressing fibrosis. TA/Fu-TSs have unique structures comprising hydrophobic triamcinolone acetonide (TA) in lipid multilayers and hydrophilic 5-fluorouracil in aqueous cores, and perform satisfactorily with regard to transdermal co-delivery to macrophages and HS fibroblasts in emerging HS tissues. According to the in vitro/vivo results, TA/Fu-TSs not only promote macrophage phenotype-switching to inhibit inflammation by interleukin-related pathways, but also suppress fibrosis to remodel extracellular matrix by collagen-related pathways. Therefore, TA/Fu-TSs overcome prolonged inflammation and excessive fibrosis in emerging HS tissues, and provide an effective therapeutic strategy for controlling HS formation via their synergy of macrophage phenotype-switching and anti-fibrosis effect.


Assuntos
Cicatriz Hipertrófica , Humanos , Cicatriz Hipertrófica/tratamento farmacológico , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Nanogéis/uso terapêutico , Fibrose , Fenótipo , Triancinolona Acetonida/uso terapêutico , Fluoruracila/uso terapêutico , Inflamação , Macrófagos/metabolismo
7.
Nat Commun ; 14(1): 7267, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949867

RESUMO

The photothermal effect in nanomaterials, resulting from resonant optical absorption, finds wide applications in biomedicine, cancer therapy, and microscopy. Despite its prevalence, the photothermal effect in light-absorbing nanoparticles has typically been assessed using bulk measurements, neglecting near-field effects. Beyond standard imaging and therapeutic uses, nanosecond-transient photothermal effects have been harnessed for bacterial inactivation, neural stimulation, drug delivery, and chemical synthesis. While scanning probe microscopy and electron microscopy offer single-particle imaging of photothermal fields, their slow speed limits observations to milliseconds or seconds, preventing nanoscale dynamic investigations. Here, we introduce decoupled optical force nanoscopy (Dofn), enabling nanometer-scale mapping of photothermal forces by exploiting unique phase responses to temporal modulation. We employ the photothermal effect's back-action to distinguish various time frames within a modulation period. This allows us to capture the dynamic photothermal process of a single gold nanorod in the nanosecond range, providing insights into non-stationary thermal diffusion at the nanoscale.

8.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(10): 1046-1051, 2023 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-37905762

RESUMO

OBJECTIVES: To explore the risk factors for hemorrhagic cystitis (HC) in children with ß-thalassemia major (TM) undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: A retrospective analysis was conducted on clinical data of 247 children with TM who underwent allo-HSCT at Shenzhen Children's Hospital from January 2021 to November 2022. The children were divided into an HC group (91 cases) and a non-HC group (156 cases) based on whether HC occurred after operation. Multivariable logistic regression analysis was used to explore the risk factors for HC, and the receiver operating characteristic curve was used to analyze the predictive efficacy of related factors for HC. RESULTS: Among the 247 TM patients who underwent allo-HSCT, the incidence of HC was 36.8% (91/247). Univariate analysis showed age, incompatible blood types between donors and recipients, occurrence of acute graft-versus-host disease (aGVHD), positive urine BK virus deoxyribonucleic acid (BKV-DNA), and ≥2 viral infections were associated with the development of HC after allo-HSCT (P<0.05). Multivariable analysis revealed that incompatible blood types between donors and recipients (OR=3.171, 95%CI: 1.538-6.539), occurrence of aGVHD (OR=2.581, 95%CI: 1.125-5.918), and positive urine BKV-DNA (OR=21.878, 95%CI: 9.633-49.687) were independent risk factors for HC in children with TM who underwent allo-HSCT. The receiver operating characteristic curve analysis showed that positive urine BKV-DNA alone or in combination with two other risk factors (occurrence of aGVHD, incompatible blood types between donors and recipients) had a certain accuracy in predicting the development of HC after allo-HSCT (area under the curve >0.8, P<0.05). CONCLUSIONS: Incompatible blood types between donors and recipients, occurrence of aGVHD, and positive urine BKV-DNA are risk factors for HC after allo-HSCT in children with TM. Regular monitoring of urine BKV-DNA has a positive significance for early diagnosis and treatment of HC.


Assuntos
Cistite , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Infecções por Polyomavirus , Talassemia beta , Humanos , Criança , Estudos Retrospectivos , Talassemia beta/complicações , Talassemia beta/terapia , Cistite/etiologia , Cistite/diagnóstico , Cistite/epidemiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Fatores de Risco , Hemorragia/etiologia , Doença Enxerto-Hospedeiro/complicações , DNA , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/epidemiologia
9.
Theranostics ; 13(14): 4821-4835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771766

RESUMO

Rationale: Novel vaccine R&D is essential to interrupt the COVID-19 pandemic and other epidemics in the future. Subunit vaccines have received tremendous attention for their low cost and safety. To improve the immunogenicity of subunit vaccines, we developed a novel vaccine adjuvant system. Methods: Here we rationally designed a CpG 1018 and graphene oxide-based bi-adjuvant system to deliver the Receptor-Binding Domain (RBD) of the SARS-CoV-2 spike protein and obtained the graphene oxide-based complex adjuvant nanovaccine (GCR). Furthermore, we developed a microneedle patch vaccine (MGCR) based on the GCR vaccine. Results: GCR nanovaccine displayed superb antigen loading and encapsulation efficiency. Two dosages of vaccination of GCR nanovaccine could elicit adequate RBD-specific binding antibody response with 2.14-fold higher IgG titer than Alum adjuvant vaccine. The peptide pools assay demonstrated the robust RBD-specific Type 1 Cellular response induced by the GCR nanovaccine in CD8+ T cells. Furthermore, we prepared an MGCR microneedle patch, which generated a similar RBD-specific binding antibody response to the GCR vaccine, sustained a high antibody level above 16 weeks, and significantly elevated the Tcm proportion in mouse spleen. The MGCR microneedle patch vaccine also could be stably stored at room temperature for several months and administrated without medical staff, which maximizes the vaccine distribution efficiency. Conclusion: The vaccine system could significantly improve the vaccine distribution rate in low-income areas and offer a potential vaccination approach to fight against the SARS-Cov-2 infection and other pandemics occurred in the future.

10.
Hematology ; 28(1): 2241226, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548329

RESUMO

BACKGROUND: In China, conventional genetic testing methods can only detect common thalassemia variants. Accurate detection of rare thalassemia is crucial for clinical diagnosis, especially for children that need long-term blood transfusion. This study aims to explore the application value of third-generation sequencing (TGS) in the diagnosis of rare thalassemia in children with anemia. METHODS: We enrolled 20 children with anemia, excluding from iron deficiency anemia (IDA). TGS was employed to identify both known and novel thalassemia genotypes, while sanger sequencing was used to confirm the novel mutation detected. RESULTS: Among the 20 samples, we identified 5 cases of rare thalassemia. These included ß-4.9 (hg38,Chr11:5226187-5231089) at HBB gene, α-91(HBA2:c.*91delT), αCD30(HBA2:c.91-93delGAG), Chinese Gγ+(Aγδß)0(NG_000007.3: g .48795-127698 del 78904) and delta - 77(T > C)(HBD:c.-127T>C). Notably, the -SEA/α-91α genotype associated with severe non-deletional hemoglobin H disease (HbH disease) has not been previously reported. Patients with genotypes ß654/ß-4.9 and -SEA/α-91α necessitate long-term blood transfusions, and those with the -SEA/αCD30α, Chinese Gγ+(Aγδß)0 and delta thalassemia demonstrate mild anemia. CONCLUSIONS: TGS demonstrates promising potential as a diagnostic tool for suspected cases of rare thalassemia in children, especially those suspected to have transfusion-dependent thalassemia (TDT).


Assuntos
Anemia , Hemoglobinas , Sequenciamento de Nucleotídeos em Larga Escala , Talassemia , Criança , Humanos , Talassemia alfa/diagnóstico , Talassemia alfa/genética , Anemia/etiologia , Anemia/genética , Povo Asiático , Talassemia beta/diagnóstico , Talassemia beta/genética , China , Genótipo , Hemoglobinas/genética , Mutação , Doenças Raras/diagnóstico , Doenças Raras/genética , Talassemia/diagnóstico , Talassemia/genética , Talassemia/terapia , Transfusão de Sangue
11.
Infect Drug Resist ; 16: 5501-5510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638069

RESUMO

Purpose: The emergence of multi-drug resistant ESBL-producing E. coli poses a global health problem. In this study, we aimed to investigate the prevalence of E. coli infections and their antibiotic susceptibility profiles in paediatric clinical cases in Shenzhen, China from Jan 1, 2014, to Jan 30, 2019, while also determining temporal trends, identifying ESBL-producing strains, and recommending potential empirical antibiotic therapy options. Methods: We isolated a total of 4148 E. coli from different specimens from a single paediatric healthcare centre. Additionally, we obtained relevant demographic data from the hospital's electronic health records. Subsequently, we performed antimicrobial susceptibility testing for 8 classes of antibiotics and assessed ESBL production. Results: Out of the 4148 isolates, 2645 were from males. The highest burden of E. coli was observed in the age group of 0-1 years, which gradually declined over the five-year study period. Antimicrobial susceptibility results indicated that 82% of E. coli isolates were highly resistant to ampicillin, followed by 52.36% resistant to cefazolin and 47.46% resistant to trimethoprim/sulfamethoxazole. Notably, a high prevalence of ESBL production (49.54%) was observed among the E. coli isolates, with 60% of them displaying a multi-drug resistance phenotype. However, it is worth mentioning that a majority of the isolates remained susceptible to ertapenem and imipenem. Our findings also highlighted a decrease in E. coli infections in Shenzhen, primarily among hospitalized patients in the 0-1 year age group. However, this decline was accompanied by a considerably high rate of ESBL production and increasing resistance to multiple antibiotics. Conclusion: Our study underscores the urgent need for effective strategies to combat multi-drug resistant ESBL-producing E. coli Infections.

12.
J Nanobiotechnology ; 21(1): 241, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496007

RESUMO

Wound healing is a common occurrence. However, delayed healing and aberrant scarring result in pathological wound healing. Accordingly, a scarless wound healing remains a significant clinical challenge. In this study, we constructed hyaluronic acid (HA)-modified and verteporfin (VP)-loaded polylactic acid (PLA) nanogels (HA/VP-PLA) to promote scarless wound healing by accelerating wound re-epithelialization and controlling scar formation. Owing to the unique structure of HA incorporating and coating in VP-loaded PLA nanoparticles, HA/VP-PLA could be topically applied on wound to achieve targeted delivery to fibroblasts. Then, HA/VP-PLA released HA and lactic acid (LA) to stimulate the proliferation and migration of fibroblasts, as well as VP to inhibit Yes-associated protein (YAP) expression and nuclear localization to suppress fibrosis. In vitro (skin fibroblasts) and in vivo (rat and rabbit models) experiments strongly suggested that HA/VP-PLA promoted scarless wound healing by accelerating wound re-epithelialization and controlling scar formation. Therefore, our work provides a feasible strategy for scarless wound healing, and the sophisticated HA/VP-PLA exhibit a great potential for clinical applications.


Assuntos
Cicatriz , Ácido Hialurônico , Ratos , Animais , Coelhos , Cicatriz/tratamento farmacológico , Cicatriz/prevenção & controle , Cicatriz/metabolismo , Ácido Hialurônico/química , Reepitelização , Nanogéis , Verteporfina , Cicatrização , Poliésteres , Pele/metabolismo
13.
J Glob Antimicrob Resist ; 34: 134-140, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481113

RESUMO

OBJECTIVES: Emergence of the plasmid-born mobile colistin resistance (mcr) gene is a growing concern in healthcare. Therefore, this study aimed to genomically characterise multidrug-resistant Escherichia coli and Klebsiella pneumoniae co-harbouring the mcr-1 and mcr-3 genes in young children. METHODS: E. coli (n = 3) and K. pneumoniae (n = 2) were collected from abdominal secretions and blood, respectively. The isolates were screened using tryptone soy broth with 4 µL/mL polymyxin-B. Growing bacteria were identified using the VITEK-2 system, matrix-assisted laser desorption/ionisation time-of-flight, and 16s RNA sequencing, followed by antibiotic susceptibility testing. Metallo-ß-lactamase (MBL) and extended-spectrum ß-lactamase (ESBL) production was also detected. Afterwards, strains were subjected to molecular screening targeting mcr variants and ESBL/MBL-encoding genes. Conjugation, pulsed-field gel electrophoresis, Southern hybridisation, multilocus sequence typing, and phylogenic group detection were performed, along with plasmid-genome sequencing and bioinformatics analysis. RESULTS: E. coli isolates (EC-19-322, 323, and 331) and K. pneumoniae isolates (KP-19-225 and 226) harboured both mcr-1 and mcr-3 genes. These strains were also found to be resistant to more than three classes of antibiotics. The conjugation experiment revealed the presence of mcr-1 and mcr-3 on a single plasmid, and the transmission frequency was 10-2 to 10-3. Both strains were found to be able to produce ESBLs and MBL. E. coli EC-19-322 and 323 were identified as ST131(O25a:H41); SP-19-331, as ST1577 (O16:H30); and K. pneumoniae, as ST231 (K2). All E. coli strains belonged to phylogenetic group B2, and the results of pulsed-field gel electrophoresis supported the multilocus sequence typing findings. CONCLUSION: This study reported the co-occurrence of mcr-1 and mcr-3 genes on a single plasmid in pathogenic ESBL/MBL-producing E. coli and K. pneumoniae isolated from young children.


Assuntos
Colistina , Escherichia coli , Humanos , Criança , Pré-Escolar , Colistina/farmacologia , Klebsiella pneumoniae/genética , Filogenia , Plasmídeos/genética , beta-Lactamases/genética , Genômica
14.
Res Microbiol ; 174(7): 104090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37356781

RESUMO

Probiotic products containing living microorganisms are gaining popularity, increasing the importance of their taxonomic status. A Bacillus-like isolate, 70 b, cultured from a probiotic feed additive, was ambiguity in taxonomic assignment and could be a novel member of Bacillus cereus group. The results of colony and cellular morphology, physiological and biochemical analysis mainly including growth performance, carbon source utilization, and rMLST and MLST were not conclusive. Fatty acids profile and molecular genetic analysis especially ANI, DDH, and core genome SNPs-based phylogenetic tree confirmed 70 b as one novel species of B. cereus group and proposed as Bacillus pfraonensis sp. nov. Comparative genomic analysis revealed the genetic differences between 70 b and other species of B. cereus group. Pseudomycoicidin was identified in 70 b. 70 b was active against multidrug-resistant pathogenic strains MRSA. The findings support 70 b is a novel species with low cytotoxicity and antimicrobial activity, and provides a better understanding of its unique characteristics and probiotic potential, and exploration of bioactive potential.

15.
Front Cell Infect Microbiol ; 13: 1116172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065212

RESUMO

Introduction: Samonella is 1 of 4 key global causes of diarrhoeal diseases, sometimes it can be serious, especially for yong children. Due to the extensive resistance of salmonella serotypes to conventional first-line drugs, macrolides (such as azithromycin) have been designated as the most important antibiotics for the treatment of salmonella. Antimicrobial resistance is a major public health problem in the world, and the mechanism of azithromycin resistance is rarely studied. Methods: This study determined the azithromycin resistance and plasmids of Salmonella enterica isolates from children attending the Shenzhen Children's Hospital. The susceptibility of ampicillin (AMP), ciprofloxacin (CIP), ceftriaxone (CRO), sulfamethoxazole (SMZ), chloramphenicol (CL), and azithromycin (AZM) were detected and the genes and plasmids from azithromycin-resistant Salmonella were detected by Illumina hi-seq and Nanopore MinIone whole genome sequencing (WGS) using a map-based method, and the genomic background of these factors was evaluated using various bioinformatics tools. Results: In total, 15 strains of nontyphoid Salmonella strains that were isolated (including S. typhimurium, S.London, S. Goldcoast, and S.Stanley) demonstrated resistance to azithromycin (minimum inhibitory concentration,MIC from 32 to >256 µg/mL), and the resistance rate was 3.08% (15/487). The sensitivity test to other antibiotics demonstrated 100% resistance to AMP, and the resistance to SMZ and CL was 86.7% and 80.0%, respectively. Through WGS analysis, all isolates were positive for a plasmid-encoded mphA gene. Plasmid incompatibility typing identified five IncFIB(K), five IncHI2/HI2A/Q1, two IncC, one IncHI2/HI2A/N, one IncR, one IncFII and one IncHI2/HI2A plasmids. Sequence analyses of plasmids revealed extensive homology to various plasmids or transposons in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Conclusion: mphA is the main gene involved in azithromycin, a macrolide, and resistance to Salmonella. It is usually located on plasmids and easily spreads, hence posing a great threat to the current treatment of Salmonella infection. The plasmid sequence similarities suggest that the plasmids acquired resistance genes from a variety of enterica bacteria and underscore the importance of a further understanding of horizontal gene transfer among enterica bacteria.


Assuntos
Infecções por Salmonella , Salmonella enterica , Humanos , Criança , Azitromicina/farmacologia , Salmonella enterica/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Salmonella/microbiologia , Salmonella/genética , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Cloranfenicol/farmacologia , Farmacorresistência Bacteriana Múltipla
16.
Nat Commun ; 14(1): 2191, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072402

RESUMO

The combination of photoacoustic (PA) imaging and ultrasound localization microscopy (ULM) with microbubbles has great potential in various fields such as oncology, neuroscience, nephrology, and immunology. Here we developed an interleaved PA/fast ULM imaging technique that enables super-resolution vascular and physiological imaging in less than 2 seconds per frame in vivo. By using sparsity-constrained (SC) optimization, we accelerated the frame rate of ULM up to 37 times with synthetic data and 28 times with in vivo data. This allows for the development of a 3D dual imaging sequence with a commonly used linear array imaging system, without the need for complicated motion correction. Using the dual imaging scheme, we demonstrated two in vivo scenarios challenging to image with either technique alone: the visualization of a dye-labeled mouse lymph node showing nearby microvasculature, and a mouse kidney microangiography with tissue oxygenation. This technique offers a powerful tool for mapping tissue physiological conditions and tracking the contrast agent biodistribution non-invasively.


Assuntos
Meios de Contraste , Imageamento Tridimensional , Camundongos , Animais , Distribuição Tecidual , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Microscopia/métodos , Microbolhas
17.
Med Mycol ; 61(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36881725

RESUMO

Neonatal invasive candidiasis (NIC) has significant morbidity and mortality. Reports have shown a different profile of those neonates affected with NIC and of fluconazole-resistant Candida spp. isolates in low- and middle-income countries (LMICs) compared to high-income countries (HICs). We describe the epidemiology, Candida spp. distribution, treatment, and outcomes of neonates with NIC from LMICs enrolled in a global, prospective, longitudinal, observational cohort study (NeoOBS) of hospitalized infants <60 days postnatal age with sepsis (August 2018-February 2021). A total of 127 neonates from 14 hospitals in 8 countries with Candida spp. isolated from blood culture were included. Median gestational age of affected neonates was 30 weeks (IQR: 28-34), and median birth weight was 1270 gr (interquartile range [IQR]: 990-1692). Only a minority had high-risk criteria, such as being born <28 weeks, 19% (24/127), or birth weight <1000 gr, 27% (34/127). The most common Candida species were C. albicans (n = 45, 35%), C. parapsilosis (n = 38, 30%), and Candida auris (n = 18, 14%). The majority of C. albicans isolates were fluconazole susceptible, whereas 59% of C. parapsilosis isolates were fluconazole-resistant. Amphotericin B was the most common antifungal used [74% (78/105)], followed by fluconazole [22% (23/105)]. Death by day 28 post-enrollment was 22% (28/127). To our knowledge, this is the largest multi-country cohort of NIC in LMICs. Most of the neonates would not have been considered at high risk for NIC in HICs. A substantial proportion of isolates was resistant to first choice fluconazole. Understanding the burden of NIC in LMIC is essential to guide future research and treatment guidelines.


Our study describes neonates from low- and middle-income countries with neonatal invasive candidiasis (NIC). Most of them were outside the groups considered at high risk for NIC described in high-income countries. Candida spp. epidemiology was also different. The mortality was high (22%). Further research in these settings is required.


Assuntos
Candidíase Invasiva , Fluconazol , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Peso ao Nascer , Candida , Candida albicans , Candida parapsilosis , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/epidemiologia , Candidíase Invasiva/microbiologia , Candidíase Invasiva/veterinária , Países em Desenvolvimento , Farmacorresistência Fúngica , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Testes de Sensibilidade Microbiana/veterinária , Estudos Prospectivos , Humanos , Recém-Nascido , Lactente
18.
Burns Trauma ; 11: tkad009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950503

RESUMO

The prevention and treatment of pathological scars remain challenging. Corticosteroids are the mainstay drugs in clinical scar prevention and treatment as they effectively induce scar regression and improve scar pruritus and pain. Currently, intralesional injections of corticosteroids are widely used in clinical practice. These require professional medical manipulation; however, the significant accompanying injection pain, repetition of injections and adverse effects, such as skin atrophy, skin pigmentation and telangiectasia, make this treatment modality an unpleasant experience for patients. Transdermal administration is, therefore, a promising non-invasive and easy-to-use method for corticosteroid administration for scar treatment. In this review, we first summarize the mechanisms of action of corticosteroids in scar prevention and treatment; then, we discuss current developments in intralesional injections and the progress of transdermal delivery systems of corticosteroids, as well as their corresponding advantages and disadvantages.

19.
J Pediatr Hematol Oncol ; 45(3): 123-129, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36952466

RESUMO

Various studies have shown that single nucleotide polymorphisms in the AT-rich interaction domain 5B (ARID5B), IKAROS family zinc finger 1 (IKZF1), phosphatidylinositol-5-phosphate 4-kinase type 2 alpha (PIP4K2A), and GATA binding protein 3 (GATA3) genes may be associated with the susceptibility and prognosis of childhood acute lymphoblastic leukemia (ALL). The present study aimed to investigate the association of ARID5B rs10821936, IKZF1 rs4132601, PIP4K2A rs7088318, and GATA3 rs3824662 gene polymorphisms with the susceptibility and prognosis of childhood ALL in China. We found that the C allele of rs10821936 (ARID5B) and the A allele of rs3824662 (GATA3) were associated with an increased risk of childhood ALL in the Chinese population. There was no significant difference in frequencies of rs4132601 (IKZF1) and rs7088318 (PIP4K2A) genotypes and alleles between the childhood ALL and control groups. We observed that CC genotype of rs10821936 (ARID5B) was associated with increased rates of high-risk and moderate-risk childhood ALL. The rs10821936 (ARID5B) could serve as a potential biomarker for assessing the risk of childhood ALL in Chinese children.


Assuntos
Proteínas de Ligação a DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Fosfatos , População do Leste Asiático , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição Ikaros/genética , Fator de Transcrição GATA3/genética , Fatores de Transcrição/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética
20.
Front Bioeng Biotechnol ; 11: 1102651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733960

RESUMO

Translatable imaging agents are a crucial element of successful molecular imaging. Photoacoustic molecular imaging relies on optical absorbing materials to generate a sufficient signal. However, few materials approved for human use can generate adequate photoacoustic responses. Here we report a new nanoengineering approach to further improve photoacoustic response from biocompatible materials. Our study shows that when optical absorbers are incorporated into the shell of a gaseous nanobubble, their photoacoustic signal can be significantly enhanced compared to the original form. As an example, we constructed nanobubbles using biocompatible indocyanine green (ICG) and biodegradable poly(lactic-co-glycolic acid) (PLGA). We demonstrated that these ICG nanobubbles generate a strong ultrasound signal and almost four-fold photoacoustic signal compared to the same concentration of ICG solution; our theoretical calculations corroborate this effect and elucidate the origin of the photoacoustic enhancement. To demonstrate their molecular imaging performance, we conjugated gastrin-releasing peptide receptor (GRPR) targeting ligands with the ICG nanobubbles. Our dual photoacoustic/ultrasound molecular imaging shows a more than three-fold enhancement in targeting specificity of the GRPR-targeted ICG nanobubbles, compared to untargeted nanobubbles or prostate cancer cells not expressing GRPR, in a prostate cancer xenograft mouse model in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA