Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Sci Rep ; 14(1): 15023, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951593

RESUMO

Proline 4-hydroxylase 2 (P4HA2) is known for its hydroxylase activity, primarily involved in hydroxylating collagen precursors and promoting collagen cross-linking under physiological conditions. Although its overexpression influences a wide variety of malignant tumors' occurrence and development, its specific effects and mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. This study focused on investigating the expression patterns, carcinogenic functions, and underlying mechanisms of P4HA2 in OSCC cells. Various databases, including TCGA, TIMER, UALCAN, GEPIA, and K-M plotter, along with paraffin-embedded samples, were used to ascertain P4HA2 expression in cancer and its correlation with clinicopathological features. P4HA2 knockdown and overexpression cell models were developed to assess its oncogenic roles and mechanisms. The results indicated that P4HA2 was overexpressed in OSCC and inversely correlated with patient survival. Knockdown of P4HA2 suppressed invasion, migration, and proliferation of OSCC cells both in vitro and in vivo, whereas overexpression of P4HA2 had the opposite effects. Mechanistically, the phosphorylation levels of the PI3K/AKT pathway were reduced following P4HA2 silencing. The study reveals that P4HA2 acts as a promising biomarker for predicting prognosis in OSCC and significantly affects metastasis, invasion, and proliferation of OSCC cells through the regulation of the PI3K/AKT signaling pathway.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Neoplasias Bucais , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases , Pró-Colágeno-Prolina Dioxigenase , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Animais , Camundongos , Feminino , Masculino , Metástase Neoplásica , Pessoa de Meia-Idade , Camundongos Nus
2.
Cell Biol Int ; 48(2): 174-189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853939

RESUMO

Geranylgeranyltransferase type I (GGTase-I) significantly affects Rho proteins, such that the malignant progression of several cancers may be induced. Nevertheless, the effect and underlying mechanism of GGTase-I in the malignant progression of salivary adenoid cystic carcinoma (SACC) remain unclear. This study primarily aimed to investigate the role and mechanism of GGTase-I in mediating the malignant progression of SACC. The level of GGTase-I gene in cells was stably knocked down by short hairpin RNA-EGFP-lentivirus. The effects of GGTase-I silencing on the migration, invasion, and spread of cells were examined, the messenger RNA levels of GGTase-I and RhoA genes of SACC cells after GGTase-I knockdown were determined, and the protein levels of RhoA and RhoA membrane of SACC cells were analyzed. Moreover, the potential underlying mechanism of silencing GGTase-I on the above-mentioned aspects in SACC cells was assessed by examining the protein expression of ROCK1, MLC, p-MLC, E-cadherin, Vimentin, MMP2, and MMP9. Furthermore, the underlying mechanism of SACC cells proliferation was investigated through the analysis of the expression of cyclinD1, MYC, E2F1, and p21CIP1/WAF1 . Besides, the change of RhoA level in SACC tissues compared with normal paracancer tissues was demonstrated through quantitative reverse-transcription polymerase chain reaction and western blot experiments. Next, the effect after GGTase-I silencing was assessed through the subcutaneous tumorigenicity assay. As indicated by the result of this study, the silencing of GGTase-I significantly reduced the malignant progression of tumors in vivo while decreasing the migration, invasion, and proliferation of SACC cells and RhoA membrane, Vimentin, ROCK1, p-MLC, MMP2, MMP9, MYC, E2F1, and CyclinD1 expression. However, the protein expression of E-cadherin and p21CIP1/WAF1 was notably upregulated. Subsequently, no significant transform of RhoA and MLC proteins was identified. Furthermore, RhoA expression in SACC tissues was significantly higher than that in paracancerous tissues. As revealed by the results of this study, GGTase-I shows a correlation with the proliferation of SACC through the regulation of cell cycle and may take on vital significance in the migration and invasion of SACC by regulating RhoA/ROCK1/MLC signaling pathway. GGTase-I is expected to serve as a novel exploration site of SACC.


Assuntos
Alquil e Aril Transferases , Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Quinases Associadas a rho , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Vimentina/metabolismo , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Invasividade Neoplásica/genética , Pontos de Checagem do Ciclo Celular , Transdução de Sinais , Proliferação de Células , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
3.
Transl Pediatr ; 12(11): 2044-2052, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38130591

RESUMO

Background: The use of a relevant emergency score can provide an accurate assessment of the patient's condition and prognosis. However, the status of related studies remains unclear. The current study analyzed the research status of emergency surgery score (ESS) of trauma patients by using bibliometric methods. Methods: The Science Citation Index Expanded (SCI-E) database in the Web of Science Core Collection (WOSCC) was searched using keywords "trauma" and "emergency surgery score". All records from the search results and cited references were exported to Excel, duplicate literature records were removed, information for the same author and organization in different signature forms were merged. The resulting literatures were analyzed by year of publication, citation, discipline, countries and research institutions, journals, authors, and use of keywords. The cooperation among countries, institutions, and authors was also examined. Results: A total of 2,175 document were retrieved. The number of published literature and the number of citations per year increased annually. The number of published documents (n=1,029) and research cooperation (centrality score, 0.44) in the United States were significantly ahead of those in other countries. The ten research institutions with the largest number of published documents were all from the United States, with much cooperation between research institutions and authors. There were many publications from China (n=108), but with few cooperations (centrality score, 0.22). The journals with the largest number of published articles were professional in the fields of trauma, emergency, and critical care. Keyword analysis showed that infection and shock were important issues besides surgery in the research related to ESS of trauma patients. Conclusions: Research related to ESS of trauma patients has been mainly conducted in the United States, and Chinese researchers should increase their level of cooperation.

4.
J Neurogenet ; 37(3): 103-114, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812019

RESUMO

Ischemic stroke (IS) can cause neuronal cell loss and function defects. Exosomes derived from neural stem cells (NSC-Exos) improve neural plasticity and promote neural function repair following IS. However, the potential mechanism remains unclear. In this study, NSC-Exos were characterized and co-cultured with microglia. We found that NSC-Exos increased NRF2 expression in oxygen-glucose deprivation/reoxygenation and LPS-induced microglia and converted microglia from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype. NSC-Exos reduced m6A methylation modification of nuclear factor erythroid 2-related factor 2 (NRF2) mRNA via obesity-associated gene (FTO). Furthermore, NSC-Exos reduced the damage to neurons caused by microglia's inflammatory response. Finally, the changes in microglia polarization and neuron damage caused by FTO knockdown in NSE-Exos were attenuated by NRF2 overexpression in microglia. These findings revealed that NSC-Exos promotes NRF2 expression and M2 polarization of microglial via transferring FTO, thereby resulting in neuroprotective effects.


Assuntos
Isquemia Encefálica , Células-Tronco Neurais , Humanos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
7.
Heliyon ; 9(2): e13198, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793959

RESUMO

Objective: The aim of this study was to summarize previously published data and assess the alterations in the composition of the oral microbiome in OSCC using a systematic review and meta-analysis. Design: Electronic databases were systematically searched for studies on the oral microbiome in OSCC published before December 2021. Qualitative assessments of compositional variations at the phylum level were performed. The meta-analysis on abundance changes of bacteria genera was performed via a random-effects model. Results: A total of 18 studies involving 1056 participants were included. They consisted of two categories of studies: 1) case-control studies (n = 9); 2) nine studies that compared the oral microbiome between cancerous tissues and paired paracancerous tissues. At the phylum level, enrichment of Fusobacteria but depletion in Actinobacteria and Firmicutes in the oral microbiome was demonstrated in both categories of studies. At the genus level, Fusobacterium showed an increased abundance in OSCC patients (SMD = 0.65, 95% CI: 0.43-0.87, Z = 5.809, P = 0.000) and in cancerous tissues (SMD = 0.54, 95% CI: 0.36-0.72, Z = 5.785, P = 0.000). The abundance of Streptococcus was decreased in OSCC (SMD = -0.46, 95% CI: -0.88-0.04, Z = -2.146, P = 0.032) and in cancerous tissues (SMD = -0.45, 95% CI: -0.78-0.13, Z = -2.726, P = 0.006). Conclusions: Disturbances in the interactions between enriched Fusobacterium and depleted Streptococcus may participate in or prompt the occurrence and development of OSCC and could be potential biomarkers for detection of OSCC.

8.
Neurochem Res ; 48(5): 1580-1595, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36574150

RESUMO

In early brain injury (EBI), oxidative stress occurs following subarachnoid hemorrhage (SAH), and mitochondria are intricately linked to this process. SS31, a mitochondria-targeting antioxidative peptide, has been demonstrated to be beneficial for multiple diseases because of its powerful antioxidant and neuroprotective properties. Although our previous study revealed that SS31 was involved in the powerful antioxidant effect following SAH, the underlying molecular mechanisms remained unclear. Thus, our study aimed to investigate the neuroprotective effects of SS31 by reversing mitochondrial dysfunction in EBI following SAH, via activating the Nrf2 signaling and PGC-1α pathways. Our findings confirmed that SS31 ameliorated SAH-triggered oxidative insult. SS31 administration decreased redundant reactive oxygen species, alleviated lipid peroxidation, and elevated the activities of antioxidant enzymes. Concomitant with the inhibited oxidative insult, SS31 dramatically attenuated neurological deficits, cerebral edema, neural apoptosis, and blood-brain barrier disruption following SAH. Moreover, SS31 remarkably promoted nuclear factor-erythroid 2 related factor 2 (Nrf2) nuclear shuttle and upregulated the expression levels of heme oxygenase-1 and NADPH: quinine oxidoreductase1. Additionally, SS31 enhanced the expression levels of PGC-1α and its target genes, and increased the mtDNA copy number, promoting mitochondrial function. However, PGC-1α-specific inhibitor SR-18292 pretreatment dramatically suppressed SS31-induced Nrf2 expression and PGC-1α activation. Furthermore, pretreatment with SR-18292 reversed the neuroprotective and antioxidant roles of SS31. These significant beneficial effects were associated with the activation of the Nrf2 signaling and PGC-1α pathways and were antagonized by SR-18292 administration. Our findings reveal that SS31 exhibits its neuroprotective activity by reversing mitochondrial dysfunction via activating the Nrf2 signaling pathway, which could be mediated through PGC-1α activation.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Ratos , Animais , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle , Lesões Encefálicas/complicações , Estresse Oxidativo , Mitocôndrias/metabolismo
10.
Front Oncol ; 12: 815998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072787

RESUMO

The Disheveled, EGL-10, Pleckstrin domain containing 1 (DEPDC1) is a new oncogene that has recently been described. The mechanisms and functions of its expression are yet to be determined in oral squamous cell carcinoma (OSCC). In the present study, the impact of DEPDC1 on the growth and development of OSCC was investigated using animal models, cell lines and human tissue samples. Elevated DEPDC1 expression within cancer cell lines and human OSCC has been identified. Mechanistic examination showed that restored DEPDC1 expression in vivo and in vitro stimulated OSCC tumour development. In addition, FOXM1 interacts with DEPDC1 as indicated by co-immunoprecipitation and immunofluorescence testing. Functionally, DEPDC1 facilitated Wnt/ß-catenin signal transduction and ß-catenin protein nuclear expression. In summary, the DEPDC1, interacting with FOXM1 via Wnt/ß-catenin signaling, the closely regulated OSCC pathogenesis, suggesting that targeting the novel DEPDC1/FOXM1/ß-catenin complex is an essential OSCC therapeutic approach.

11.
Mol Biol Rep ; 49(4): 2777-2784, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35006515

RESUMO

BACKGROUND: In orthodontics, mechanical stress plays an important role in the process of bone remodeling. Mechanical stress has an effect on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). However, the mechanism remains to be studied. The aim of this study is to investigate the effects of demethyltransferase fat mass and obesity-associated (FTO) on osteogenic differentiation of BMSCs under mechanical stress condition. METHODS AND RESULTS: The rat BMSCs were cultured in vitro, followed by flow cytometry to identify the cell surface antigens. Osteogenic differentiation of BMSCs was induced by mechanical stress by using the flexcell tension system for 6 h every day and 3 days in total. BMSCs were transfected by using plasmid for FTO knockdown. The expression level of FTO, hypoxia-inducible factor (HIF)-1α, runt-related transcription factor 2 (RUNX2), bone morphogenetic proteins (BMPs) and alkaline phosphatase (ALP) were measured by real-time qPCR, western blotting. ALP activity were determined by ALP staining assays. The expression of FTO and HIF-1α in BMSCs with mechanical stress were significantly higher than BMSCs without mechanical stress, also, the expression of osteogenic differentiation markers were higher in BMSCs with mechanical stress. Knockdown of FTO decreased expression of osteogenic differentiation marker and ALP activity in stretched BMSCs. In addition, the expression of HIF-1α was decreased after knocking down FTO. CONCLUSIONS: FTO promotes the expression of HIF-1α and osteogenic differentiation under the condition of mechanical stress. This finding may facilitate the clinical application of orthodontics and the mechanism research of mechanical stress-induced osteogenesis.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Células da Medula Óssea , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Ratos , Estresse Mecânico , Regulação para Cima
12.
Arch Oral Biol ; 134: 105320, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34875442

RESUMO

OBJECTIVE: This research investigated the biological role of isoprenylcysteine carboxyl methyltransferase (ICMT) in tongue squamous cell carcinoma (TSCC) progression meanwhile to explore the conceivable mechanism. METHODS: The mRNA and protein expression were measured using real-time PCR and Western blot. Cell proliferation, apoptosis, cycle distribution, migration and invasion were evaluated by CCK-8 assay, flow cytometry, wound-healing assay and transwell assay. The anti-tumor activity of ICMT silencing was observed in nude mice. RESULTS: Our results indicated that silencing of ICMT-mediated methylation effectively inhibited TSCC cells proliferation in vitro and reduced tumor growth in vivo. Moreover, ICMT knockdown also induced cell apoptosis and cell cycle arrest of both CAL-27 and SCC-4 cells. In addition, CAL-27 and SCC-4 cells migration and invasion were weakened by ICMT siRNA. Mechanistically, ICMT deficiency significantly decreased the K-Ras and RhoA membrane targeting localization, leading to the suppression of K-Ras- and RhoA-mediated downstream signaling in CAL-27 and SCC-4 cells. CONCLUSIONS: Altogether, our findings identified a crucial role played by ICMT in the progression of TSCC and the potential mechanisms by which exerted its effects, indicating that targeting ICMT may represent a promising therapeutic strategy for TSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Animais , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Camundongos Nus , Proteínas Metiltransferases , Transdução de Sinais , Língua
13.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 40(4): 394-402, 2022 Jul 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38596954

RESUMO

OBJECTIVES: This study aimed to investigate the effects of farnesyltransferase (FTase) on the migration, invasion, and epithelial-mesenchymal transition (EMT) of SACC-LM and SACC-83 cells in salivary adenoid cystic carcinoma and determine the relative mechanism. METHODS: Three small interfering RNA (siRNA) sequences were designed and constructed based on the human FTase gene sequence. The SACC-LM and SACC-83 cells in the logarithmic growth period were used, and the expression of FTase was suppressed by liposomal transient transfection. The tested cells were categorized as the FTase-siRNA-1, FTase-siRNA-2, and FTase-siRNA-3 groups. Both negative control group (NC-siRNA) and blank control group (only transfection reagent was added) were set. The mRNA expression of FTase and HRAS was detected by quantitive real-time polymerase chain reaction, and the silencing efficiency was determined. The expression levels of FTase, HRAS, protein kinase B (AKT), phospho-AKT, p65, phospho-p65 (Ser563), E-cadherin, vimentin, matrix metalloproteinase (MMP)-9 protein, and HRAS membrane protein were detected by Western blot. Transwell assay and wound healing assay were used to detect the invasion and migration abilities of cells. RESULTS: The relative expression of FTase mRNA and protein in the FTase-siRNA-1 group decreased compared with those in the control group (P<0.05). HRAS mRNA and total protein expression had no significant difference (P>0.05), and the relative expression of HRAS membrane protein decreased (P<0.05). The relative expression of E-cadherin increased (P<0.05), vimentin decreased (P<0.05), and MMP-9 decreased (P<0.05). There was no significant difference in the relative expression levels of the RAS/PI3K/AKT/nuclear factor-κB signaling pathway-related proteins AKT and p65 (P>0.05), but the relative expression levels of phospho-AKT and phospho-p65 decreased. The invasion and migration ability of the FTase-siRNA-1 group significantly decreased compared with that in the control group (P<0.05). CONCLUSIONS: Silencing FTase in vitro could effectively inhibit the invasion and migration of SACC-LM and SACC-83 cells by interfering with the localization of the HRAS membrane protein and regulating the RAS/PI3K/AKT/nuclear factor-κB signaling pathway to mediate EMT.

14.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(5): 510-517, 2021 Oct 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34636197

RESUMO

OBJECTIVES: This study aims to investigate the effect of RhoE expression on the migration and invasion of tongue squamous cell carcinoma (TSCC). METHODS: Forty-eight TSCC cases were selected from the Maxillofacial Surgery Center of Qingdao Municipal Hospital from 2017 to 2019. The expression of RhoE in the specimens (TSCC and adjacent tissues) was detected by immunohistochemistry, and RhoE mRNA and protein were extracted to further detect the expression of RhoE. SCC-4 and CAL-27 cells were selected for in vitro experiments. Transient transfection was used to overexpress RhoE. Real-time fluorescence quantitative PCR (qRT-PCR) and Western blot analyses were conducted to detect the overexpression efficiency. Scratch test and Transwell cell invasion tests were used to detect the migration and invasion ability of TSCC, respectively. The expression levels of Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) were detected by Western blot. Experimental data were analyzed by Graphpad prism 8.2.1 software. RESULTS: The expression level of RhoE in TSCC was significantly lower than that in adjacent tissues (P<0.05). The migration and invasion abilities of TSCC were significantly lower than those in the control group (P<0.05). The Western blot showed significantly lower expression levels of ROCK1, MMP-2, and MMP-9 in the experimental group than in the control group (P<0.05). CONCLUSIONS: RhoE expression is low in TSCC. Over expression RhoE in TSCC can significantly decrease its migration and invasion abilities. Hence, RhoE may play an important role in regulating the metastasis and invasion of TSCC and provide a new target for gene therapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Proteínas rho de Ligação ao GTP/genética , Linhagem Celular Tumoral , Humanos , Metaloproteinase 2 da Matriz , Invasividade Neoplásica , Língua , Quinases Associadas a rho
15.
Front Cell Infect Microbiol ; 11: 680288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222048

RESUMO

Dental caries is one of the most prevalent chronic oral diseases, affecting approximately half of children worldwide. The microbial composition of dental caries may depend on age, oral health, diet, and geography, yet the effect of geography on these microbiomes is largely underexplored. Here, we profiled and compared saliva microbiota from 130 individuals aged 6 to 8 years old, representing both healthy children (H group) and children with caries-affected (C group) from two geographical regions of China: a northern city (Qingdao group) and a southern city (Guangzhou group). First, the saliva microbiota exhibited profound differences in diversity and composition between the C and H groups. The caries microbiota featured a lower alpha diversity and more variable community structure than the healthy microbiota. Furthermore, the relative abundance of several genera (e.g., Lactobacillus, Gemella, Cryptobacterium and Mitsuokella) was significantly higher in the C group than in the H group (p<0.05). Next, geography dominated over disease status in shaping salivary microbiota, and a wide array of salivary bacteria was highly predictive of the individuals' city of origin. Finally, we built a universal diagnostic model based on 14 bacterial species, which can diagnose caries with 87% (AUC=86.00%) and 85% (AUC=91.02%) accuracy within each city and 83% accuracy across cities (AUC=92.17%). Although the detection rate of Streptococcus mutans in populations is not very high, it could be regarded as a single biomarker to diagnose caries with decent accuracy. These findings demonstrated that despite the large effect size of geography, a universal model based on salivary microbiota has the potential to diagnose caries across the Chinese child population.


Assuntos
Cárie Dentária , Microbiota , Criança , China/epidemiologia , Cárie Dentária/epidemiologia , Suscetibilidade à Cárie Dentária , Dentição Mista , Humanos , Saliva
16.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(3): 328-335, 2021 Jun 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34041883

RESUMO

OBJECTIVES: The effect of isoprenylcysteine carboxymethyltransferase (ICMT) silencing on the migration and invasion of tongue squamous cell carcinoma was investigated by constructing the small interfering RNA (siRNA) of ICMT. METHODS: Through liposomal transfection, siRNA was transfected into human tongue squamous cell carcinoma CAL-27 and SCC-4 cells (ICMT-siRNA group) with a negative control group (transfected with NC-siRNA) and a blank control group (transfected with a transfection reagent but not with siRNA). Quantitative real-time polymerase chain reaction was performed to analyze the mRNA expression of ICMT and RhoA in each group of cells after transfection and to measure the silencing efficiency. Western blot was applied to examine the expression levels of ICMT, total RhoA, membrane RhoA, ROCK1, matrix metalloproteinase (MMP)-2, and MMP-9 proteins in each group. The migration and invasion abilities were evaluated via wound healing and Transwell motility assays. RESULTS: After CAL-27 and SCC-4 cells were transfected with ICMT-siRNA, the expression levels of ICMT genes and proteins decreased significantly in the experimental group compared with those in the negative and blank control groups (P<0.05). The mRNA and total protein expression levels of RhoA in the two groups were not significantly different (P>0.05). The expression levels of RhoA membrane protein, ROCK1, MMP-2, and MMP-9 decreased (P<0.05). The migration and invasion abilities were inhibited (P<0.05). CONCLUSIONS: The migration and invasion abilities of CAL-27 and SCC-4 cells were reduced significantly after the transfection of ICMT-siRNA, and the involved mechanism might be related to the RhoA-ROCK signaling pathway.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Invasividade Neoplásica , Proteínas Metiltransferases , RNA Interferente Pequeno , Língua , Transfecção , Quinases Associadas a rho
17.
Front Mol Biosci ; 8: 620683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968980

RESUMO

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) has been shown to play a pivotal role in the regulation of mitochondrial biogenesis in diseases. Resveratrol (RSV), a natural polyphenolic reagent, has powerful antioxidant properties and the ability to scavenge mitochondrial reactive oxygen species (ROS) in a variety of central nervous system diseases. However, the underlying molecular mechanisms of RSV on mitochondrial biogenesis in early brain injury (EBI) following subarachnoid hemorrhage (SAH) remain poorly understood. This study aimed to explore the potential neuroprotective effects of RSV on mitochondrial biogenesis and function by activation of the PGC-1α signaling pathway in a prechiasmatic cistern SAH model. PGC-1α expression and related mitochondrial biogenesis were detected. Amounts of nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) were determined to evaluate the extent of mitochondrial biogenesis. Increased PGC-1α and mitochondrial biogenesis after SAH were observed in the temporal cortex. Resveratrol increased the expression of PGC-1α, NRF1, and TFAM, and promoted PGC-1α nuclear translocation. Moreover, RSV could scavenge excess ROS, increase the activity of superoxide dismutase (SOD), enhance the potential of mitochondrial membrane and ATP levels, reduce the number of mitochondrial DNA copy, and decrease the level of malondialdehyde (MDA). RSV significantly ameliorated the release of apoptosis-related cytokines, namely P53, cleaved caspase-3, cytochrome c, and BAX, leading to the amelioration of neuronal apoptosis, brain edema, and neurological impairment 24 h after SAH. These results indicate that resveratrol promotes mitochondrial biogenesis and function by activation of the PGC-1α signaling pathway in EBI following SAH.

18.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(1): 64-73, 2021 Feb 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-33723939

RESUMO

OBJECTIVES: This study aimed to explore the effects of silencing isoprenylcysteine carboxyl methyltransfe-rase (Icmt) through small interfering RNA (siRNA) interference on the proliferation and apoptosis of tongue squamous cell carcinoma (TSCC). METHODS: Three siRNA were designed and constructed for the Icmt gene sequence and were then transfected into TSCC cells CAL-27 and SCC-4 to silence Icmt expression. The tested cells were divided as follows: RNA interference groups Icmt-siRNA-1, Icmt-siRNA-2, and Icmt-siRNA-3, negative control group, and blank control group. The transfection efficiency of siRNA was detected by the fluorescent group Cy3-labeled siRNA, and the expression of Icmt mRNA was screened by quantitive real-time polymerase chain reaction (qRT-PCR) selected the experimental group for subsequent experiments. The expression of Icmt, RhoA, Cyclin D1, p21, extracellular regulated protein kinases (ERK), and phospho-extracellular regulated protein kinases (p-ERK) were analyzed by Western blot. The proliferation abilities of TSCC cells were determined by cell counting kit-8 assay. The change in apoptosis was detected by AnnexinV-APC/propidium staining (PI) assay. Cell-cycle analysis was conducted by flow cytometry. RESULTS: The expression of Icmt mRNA and protein in TSCC cells significantly decreased after Icmt-siRNA transfection (P<0.05). No significant difference in RhoA mRNA and protein expression was detected (P>0.05), but the expression of RhoA membrane protein decreased compared with the negative control group and blank control groups (P<0.05). Cyclin D1 expression decreased, whereas p21 expression significantly increased and the relative expression of ERK protein in the experimental group did not significantly different that in the control group (P>0.05). However, the phosphorylation level of ERK was significantly reduced (P<0.05). The cell cycles of TSCC CAL-27 and SCC-4 were altered in G1/S, cell proliferation activity was inhibited, and apoptosis was induced (P<0.05). CONCLUSIONS: Silencing Icmt can effectively downregulate its expression in TSCC cells, reduce the RhoA membrane targeting localization and cell proliferation, and induce apoptosis. Thus, Icmt may be a potential gene therapy target for TSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias da Língua , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Proteínas Metiltransferases , RNA Interferente Pequeno , Língua
19.
Oncol Rep ; 45(1): 58-64, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200230

RESUMO

Oral cancer is one of the leading types of cancer and remains the most common cause of cancer­related mortality in Asia. The pathogenesis of oral cancer is complicated and, due to lack of accurate diagnostic methods and efficient treatment strategies, oral cancer is responsible for a large number of deaths. Therefore, there is an urgent need for developing novel diagnostic tools and targeted therapies. MicroRNAs (miRNAs) represent a class of small non­coding RNAs that are key elements and play critical regulatory roles in the pathological processes of various diseases. miRNAs are widely distributed in body fluids and are specifically expressed in different cancers, and they may represent effective biomarkers that may be used for early detection of oral cancer. In addition, miRNAs are involved in oral cancer development, progression and prognosis by targeting a broad range of mRNAs that may be of therapeutic value for oral cancer. The aim of the present review was to summarize the role of miRNAs as new diagnostic tools and potential therapeutic targets in oral cancer, and investigate the underlying molecular mechanisms.


Assuntos
MicroRNAs/fisiologia , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/terapia , Biomarcadores Tumorais/análise , Humanos , MicroRNAs/análise , Neoplasias Bucais/etiologia , Neoplasias Bucais/patologia , Prognóstico
20.
Cancer Manag Res ; 12: 5353-5363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753953

RESUMO

OBJECTIVE: The aim of this study was to explore the signatures of oral microbiome associated with OSCC using a random forest (RF) model. PATIENTS AND METHODS: A total of 24 patients with OSCC were enrolled in the study. The oral microbiome was assessed in cancerous lesions and matched paracancerous tissues from each patient using 16S rRNA gene sequencing. Signatures of mucosal microbiome in OSCC were identified using a RF model. RESULTS: Significant differences were found between OSCC lesions and matched paracancerous tissues with respect to the microbial profile and composition. Linear discriminant analysis effect size analyses (LEfSe) identified 15 bacteria genera associated with cancerous lesions. Fusobacterium, Treponema, Streptococcus, Peptostreptococcus, Carnobacterium, Tannerella, Parvimonas and Filifactor were enriched. A classifier based on RF model identified a microbial signature comprising 12 bacteria, which was capable of distinguishing cancerous lesions and paracancerous tissues (AUC = 0.82). The network of the oral microbiome in cancerous lesions appeared to be simplified and fragmented. Functional analyses of oral microbiome showed altered functions in amino acid metabolism and increased capacity of glucose utilization in OSCC. CONCLUSION: The identified microbial signatures may potentially be used as a biomarker for predicting OSCC or for clinical assessment of oral cancer risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA