Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Lancet Planet Health ; 7(11): e900-e911, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37940210

RESUMO

BACKGROUND: High-level exposure to indoor air pollutants (IAPs) and their corresponding adverse health effects have become a public concern in China in the past 10 years. However, neither national nor provincial level burden of disease attributable to multiple IAPs has been reported for China. This is the first study to estimate and rank the annual burden of disease and the financial costs attributable to targeted residential IAPs at the national and provincial level in China from 2000 to 2017. METHODS: We first did a systematic review and meta-analysis of 117 articles from 37 231 articles identified in major databases, and obtained exposure-response relationships for the candidate IAPs. The exposure levels to these IAPs were then collected by another systematic review of 1864 articles selected from 52 351 articles. After the systematic review, ten IAPs with significant and robust exposure-response relationships and sufficient exposure data were finally targeted: PM2·5, nitrogen dioxide, sulphur dioxide, ozone, carbon monoxide, radon, formaldehyde, benzene, toluene, and p-dichlorobenzene. The annual exposure levels in residences were then evaluated in all 31 provinces in mainland China continuously from 2000 to 2017, using the spatiotemporal Gaussian process regression model to analyse indoor originating IAPs, and the infiltration factor method to analyse outdoor originating IAPs. The disability-adjusted life-years (DALYs) attributable to the targeted IAPs were estimated at both national and provincial levels in China, using the population attributable fraction method. Financial costs were estimated by an adapted human capital approach. FINDINGS: From 2000 to 2017, annual DALYs attributable to the ten IAPs in mainland China decreased from 4620 (95% CI 4070-5040) to 3700 (3210-4090) per 100 000. Nevertheless, in 2017, IAPs still ranked third among all risk factors, and their DALYs and financial costs accounted for 14·1% (95% CI 12·3-15·6) of total DALYs and 3·45% (3·01-3·82) of the gross domestic product. Specifically, the rank of ten targeted IAPs in order of their contribution to DALYs in 2017 was PM2·5, carbon monoxide, radon, benzene, nitrogen dioxide, ozone, sulphur dioxide, formaldehyde, toluene, and p-dichlorobenzene. The DALYs attributable to IAPs were 9·50% higher than those attributable to outdoor air pollution in 2017. For the leading IAP, PM2·5, the DALYs attributable to indoor origins are 18·3% higher than those of outdoor origins. INTERPRETATION: DALYs attributed to IAPs in China have decreased by 20·0% over the past two decades. Even so, they are still much higher than those in the USA and European countries. This study can provide a basis for determining which IAPs to target in various indoor air quality standards and for estimating the health and economic benefits of various indoor air quality control approaches, which will help to reduce the adverse health effects of IAPs in China. FUNDING: The National Key Research and Development Program of China and the National Natural Science Foundation of China.


Assuntos
Poluentes Atmosféricos , Ozônio , Radônio , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Dióxido de Enxofre/análise , Benzeno/efeitos adversos , Benzeno/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Formaldeído/análise , Efeitos Psicossociais da Doença , Material Particulado/análise , Radônio/análise , Ozônio/análise , Tolueno/análise
2.
Metabolites ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887365

RESUMO

Maintaining a diverse and well-balanced nasal and oral microbiota is vital for human health. However, the impact of indoor microbiome and metabolites on nasal and oral microbiota remains largely unknown. Fifty-six children in Shanghai were surveyed to complete a questionnaire about their personal and environmental characteristics. The indoor microbiome and metabolites from vacuumed indoor dust were profiled via shotgun metagenomics and untargeted liquid chromatography-mass spectrometry (LC-MS). The nasal and oral microbiota in children was characterized using full-length 16S rRNA sequencing from PacBio. Associations between personal/environmental characteristics and the nasal/oral microbiota were calculated using PERMANOVA and regression analyses. We identified 6247, 431, and 342 microbial species in the indoor dust, nasal, and oral cavities, respectively. The overall nasal and oral microbial composition showed significant associations with environmental tobacco smoke (ETS) exposure during pregnancy and early childhood (p = 0.005 and 0.03, respectively), and the abundance of total indoor flavonoids and two mycotoxins (deoxynivalenol and nivalenol) (p = 0.01, 0.02, and 0.03, respectively). Notably, the abundance of several flavonoids, such as baicalein, eupatilin, isoliquiritigenin, tangeritin, and hesperidin, showed positive correlations with alpha diversity and the abundance of protective microbial taxa in nasal and oral cavities (p < 0.02), suggesting their potential beneficial roles in promoting nasal/oral health. Conversely, high carbohydrate/fat food intake and ETS exposure diminished protective microorganisms while augmenting risky microorganisms in the nasal/oral cavities. Further, potential microbial transfer was observed from the indoor environment to the childhood oral cavity (Moraxella catarrhalis, Streptococcus mitis, and Streptococcus salivarius), which could potentially increase virulence factors related to adherence and immune modulation and vancomycin resistance genes in children. This is the first study to reveal the association between the indoor microbiome/metabolites and nasal/oral microbiota using multi-omic approaches. These findings reveal potential protective and risk factors related to the indoor microbial environment.

3.
Environ Res ; 234: 116114, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209986

RESUMO

BACKGROUND: A diverse and balanced human gut microbiota is crucial for maintaining normal human physiological functions. However, the impact of indoor microbiome and metabolites on gut microbiota is not well understood. METHODS: A self-administered questionnaire was used to collect information on more than 40 personal and environmental characteristics and dietary habits from 56 children in Shanghai, China. Shotgun metagenomics and untargeted liquid chromatography-mass spectrometry (LC-MS) were used to characterize the indoor microbiome and metabolomic/chemical exposure in children's living rooms. PacBio full-length 16 S rRNA sequencing was used to characterize children's gut microbiota. Associations between environmental characteristics and gut microbiota diversity/composition were assessed using PERMANOVA and regression. RESULTS: In total, 6247 and 318 indoor and gut microbial species and 1442 indoor metabolites were characterized. Age of children (R2 = 0.033, p = 0.008), age start kindergarten (R2 = 0.029, p = 0.03), living adjacent to heavy traffic (R2 = 0.031, p = 0.01) and drinking soft drinks (R2 = 0.028, p = 0.04) significantly impacted overall gut microbial composition, consistent with previous studies. Having pets/plants and frequent vegetable intake were positively associated with gut microbiota diversity and the Gut Microbiome Health Index (GMHI), while frequent juice and fries intake decreased gut microbiota diversity (p < 0.05). The abundance of indoor Clostridia and Bacilli was positively associated with gut microbial diversity and GMHI (p < 0.01). Total indoor indole derivatives and 6 indole metabolites (L-tryptophan, indole, 3-methylindole, indole-3-acetate, 5-hydroxy-L-tryptophan and indolelactic acid, p < 0.05) were positively associated with the abundance of total protective gut bacteria, suggesting a potential role in promoting gut health. Neural network analysis revealed that these indole derivatives were derived from indoor microorganisms. CONCLUSIONS: The study is the first to report associations between indoor microbiome/metabolites and gut microbiota, highlighting the potential role of indoor microbiome in shaping human gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Criança , Microbioma Gastrointestinal/fisiologia , Projetos Piloto , Triptofano/metabolismo , China , RNA Ribossômico 16S/genética , Indóis
4.
Am J Obstet Gynecol MFM ; 5(4): 100878, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36706919

RESUMO

OBJECTIVE: The association between aspirin use during pregnancy and the risk of postpartum hemorrhage remains unclear. This study aimed to explore the incidence of postpartum hemorrhage and the amount of postpartum blood loss among women who used aspirin during pregnancy. DATA SOURCES: From inception to October 2022, this study searched the following databases: MEDLINE, Web of Science, Embase, and the Cochrane Central Register of Controlled Trials. STUDY ELIGIBILITY CRITERIA: Studies comparing pregnancy outcomes that covered the incidence of postpartum hemorrhage or the amount of postpartum blood loss in pregnancies with aspirin vs placebo (or no aspirin) were included. METHODS: Reviewers separately ascertained studies, obtained data, and gauged study quality. The meta-analysis was conducted using a random effects model owing to the probable heterogeneity of the included studies. The rates of postpartum hemorrhage or the mean amounts of postpartum blood loss were compared, and the odds ratios or mean differences with 95% confidence intervals were estimated. Of note, 2 parts performed both a pooled analysis of randomized controlled trials and cohort studies and a separate analysis of randomized controlled trials. RESULTS: Overall, 21 studies with 373,926 women were included in the postpartum hemorrhage part, and 7 studies with 10,163 women were included in the postpartum blood loss part. The results suggested that aspirin (dose 60-150mg a day) use during pregnancy was associated with an increased incidence of postpartum hemorrhage (odds ratio, 1.20; 95% confidence interval, 1.07-1.34). When only randomized controlled trials were retained, the results remained significant (odds ratio, 1.12; 95% confidence interval, 1.00-1.25). In the second part, higher total blood loss after delivery was obtained (mean difference, 12.85 mL; 95% confidence interval, 3.28-22.42), and the result was unaltered when cohort studies were eliminated (mean difference, 13.72 mL; 95% confidence interval, 4.63-22.81). The conclusions are more likely to be obtained in developed countries. CONCLUSION: Low-dose aspirin use during pregnancy is a potential risk of postpartum hemorrhage and does slightly increase the amount of postpartum blood loss. Without denying the combined value of aspirin, our conclusions raised an alarm for clinicians about postpartum hemorrhage in women using aspirin during pregnancy.


Assuntos
Hemorragia Pós-Parto , Gravidez , Feminino , Humanos , Hemorragia Pós-Parto/induzido quimicamente , Hemorragia Pós-Parto/diagnóstico , Hemorragia Pós-Parto/epidemiologia , Aspirina/efeitos adversos , Resultado da Gravidez
5.
Eco Environ Health ; 2(4): 208-218, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38435359

RESUMO

Indoor microorganisms impact asthma and allergic rhinitis (AR), but the associated microbial taxa often vary extensively due to climate and geographical variations. To provide more consistent environmental assessments, new perspectives on microbial exposure for asthma and AR are needed. Home dust from 97 cases (32 asthma alone, 37 AR alone, 28 comorbidity) and 52 age- and gender-matched controls in Shanghai, China, were analyzed using high-throughput shotgun metagenomic sequencing and liquid chromatography-mass spectrometry. Homes of healthy children were enriched with environmental microbes, including Paracoccus, Pseudomonas, and Psychrobacter, and metabolites like keto acids, indoles, pyridines, and flavonoids (astragalin, hesperidin) (False Discovery Rate < 0.05). A neural network co-occurrence probability analysis revealed that environmental microorganisms were involved in producing these keto acids, indoles, and pyridines. Conversely, homes of diseased children were enriched with mycotoxins and synthetic chemicals, including herbicides, insecticides, and food/cosmetic additives. Using a random forest model, characteristic metabolites and microorganisms in Shanghai homes were used to classify high and low prevalence of asthma/AR in an independent dataset in Malaysian schools (N = 1290). Indoor metabolites achieved an average accuracy of 74.9% and 77.1% in differentiating schools with high and low prevalence of asthma and AR, respectively, whereas indoor microorganisms only achieved 51.0% and 59.5%, respectively. These results suggest that indoor metabolites and chemicals rather than indoor microbiome are potentially superior environmental indicators for childhood asthma and AR. This study extends the traditional risk assessment focusing on allergens or air pollutants in childhood asthma and AR, thereby revealing potential novel intervention strategies for these diseases.

6.
Indoor Air ; 32(11): e13170, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36437665

RESUMO

The burden of disease attributed to the indoor exposure to sulfur dioxide (SO2 ), nitrogen dioxide (NO2 ), ozone (O3 ), and carbon monoxide (CO) is not clear, and the quantitative concentration-response relationship is a prerequisite. This is a systematic review to summarize the quantitative concentration-response relationships by screening and analyzing the polled effects of population-based epidemiological studies. After collecting literature published between 1980 and 2019, a total of 19 health outcomes in 101 studies with 182 health risk estimates were recruited. By meta-analysis, the leave-one-out sensitivity analysis and Egger's test for publication bias, the robust and reliable effects were found for SO2 (per 10 µg/m3 ) with chronic obstructive pulmonary diseases (COPD) (pooled relative risks [RRs] 1.016, 95% CI: 1.012-1.021) and cardiovascular diseases (CVD) (RR 1.012, 95%CI: 007-1.018), respectively. NO2 (per 10 µg/m3 ) had the pooled RRs for childhood asthma, preterm birth, lung cancer, diabetes, and COPD by 1.134 (1.084-1.186), 1.079 (1.007-1.157), 1.055 (1.010-1.101), 1.019 (1.009-1.029), and 1.016 (1.012-1.120), respectively. CO (per 1 mg/m3 ) was significantly associated with Parkinson's disease (RR 1.574, 95% CI: 1.069-2.317) and CVD (RR 1.024, 95% CI: 1.011-1.038). No robust effects were observed for O3 . This study provided evidence and basis for further estimation of the health burden attributable to the four gaseous pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Doenças Cardiovasculares , Ozônio , Nascimento Prematuro , Doença Pulmonar Obstrutiva Crônica , Recém-Nascido , Feminino , Humanos , Criança , Dióxido de Nitrogênio , Monóxido de Carbono , Dióxido de Enxofre , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA