Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell Discov ; 10(1): 26, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443370

RESUMO

Single-cell whole-genome sequencing methods have undergone great improvements over the past decade. However, allele dropout, which means the inability to detect both alleles simultaneously in an individual diploid cell, largely restricts the application of these methods particularly for medical applications. Here, we develop a new single-cell whole-genome sequencing method based on third-generation sequencing (TGS) platform named Refresh-seq (restriction fragment ligation-based genome amplification and TGS). It is based on restriction endonuclease cutting and ligation strategy in which two alleles in an individual cell can be cut into equal fragments and tend to be amplified simultaneously. As a new single-cell long-read genome sequencing method, Refresh-seq features much lower allele dropout rate compared with SMOOTH-seq. Furthermore, we apply Refresh-seq to 688 sperm cells and 272 female haploid cells (secondary polar bodies and parthenogenetic oocytes) from F1 hybrid mice. We acquire high-resolution genetic map of mouse meiosis recombination at low sequencing depth and reveal the sexual dimorphism in meiotic crossovers. We also phase the structure variations (deletions and insertions) in sperm cells and female haploid cells with high precision. Refresh-seq shows great performance in screening aneuploid sperm cells and oocytes due to the low allele dropout rate and has great potential for medical applications such as preimplantation genetic diagnosis.

2.
Mol Cell ; 83(24): 4494-4508.e6, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38016476

RESUMO

In the cytoplasm, mRNAs are dynamically partitioned into translating and non-translating pools, but the mechanism for this regulation has largely remained elusive. Here, we report that m6A regulates mRNA partitioning between polysome and P-body where a pool of non-translating mRNAs resides. By quantifying the m6A level of polysomal and cytoplasmic mRNAs with m6A-LAIC-seq and m6A-LC-MS/MS in HeLa cells, we observed that polysome-associated mRNAs are hypo-m6A-methylated, whereas those enriched in P-body are hyper-m6A-methylated. Downregulation of the m6A writer METTL14 enhances translation by switching originally hyper-m6A-modified mRNAs from P-body to polysome. Conversely, by proteomic analysis, we identify a specific m6A reader IGF2BP3 enriched in P-body, and via knockdown and molecular tethering assays, we demonstrate that IGF2BP3 is both necessary and sufficient to switch target mRNAs from polysome to P-body. These findings suggest a model for the dynamic regulation of mRNA partitioning between the translating and non-translating pools in an m6A-dependent manner.


Assuntos
Adenina , Corpos de Processamento , Biossíntese de Proteínas , Proteínas de Ligação a RNA , Humanos , Cromatografia Líquida , Células HeLa , Polirribossomos/genética , Proteômica , RNA Mensageiro/genética , Espectrometria de Massas em Tandem , Adenina/análogos & derivados , Adenina/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
ACS Chem Biol ; 17(1): 77-84, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34846122

RESUMO

5-Formylcytidine (f5C) is one type of post-transcriptional RNA modification, which is known at the wobble position of tRNA in mitochondria and essential for mitochondrial protein synthesis. Here, we show a method to detect f5C modifications in RNA and a transcriptome-wide f5C mapping technique, named f5C-seq. It is developed based on the treatment of pyridine borane, which can reduce f5C to 5,6-dihydrouracil, thus inducing C-to-T transition in f5C sites during PCR to achieve single-base resolution detection. More than 1000 f5C sites were identified after mapping in Saccharomyces cerevisiae by f5C-seq. Moreover, codon composition demonstrated a preference for f5C within wobble sites in mRNA, suggesting the potential role in regulation of translation. These findings expand the scope of the understanding of cytosine modifications in mRNA.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Homólogo AlkB 1 da Histona H2a Dioxigenase/química , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Sequência de Bases , Citidina/análogos & derivados , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Humanos , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
4.
Genomics Proteomics Bioinformatics ; 19(6): 873-881, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34839012

RESUMO

Sex reversal, representing extraordinary sexual plasticity during the life cycle, not only triggers reproduction in animals but also affects reproductive and endocrine system-related diseases and cancers in humans. Sex reversal has been broadly reported in animals; however, an integrated resource hub of sex reversal information is still lacking. Here, we constructed a comprehensive database named ASER (Animal Sex Reversal) by integrating sex reversal-related data of 18 species from teleostei to mammalia. We systematically collected 40,018 published papers and mined the sex reversal-associated genes (SRGs), including their regulatory networks, from 1611 core papers. We annotated homologous genes and computed conservation scores for whole genomes across the 18 species. Furthermore, we collected available RNA-seq datasets and investigated the expression dynamics of SRGs during sex reversal or sex determination processes. In addition, we manually annotated 550 in situ hybridization (ISH), fluorescence in situ hybridization (FISH), and immunohistochemistry (IHC) images of SRGs from the literature and described their spatial expression in the gonads. Collectively, ASER provides a unique and integrated resource for researchers to query and reuse organized data to explore the mechanisms and applications of SRGs in animal breeding and human health. The ASER database is publicly available at http://aser.ihb.ac.cn/.


Assuntos
Genoma , Reprodução , Animais , Humanos , Hibridização in Situ Fluorescente , Reprodução/genética
5.
ACS Cent Sci ; 7(6): 973-979, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34235258

RESUMO

Deamination of cytosine and dUMP misincorporation have been found to be capable of producing uracil in the genome. This study presents the AI-seq (artificial incorporation modified nucleobase for sequencing), a "base substitution", which not only is capable of profiling uracil at single-nucleotide resolution and showing its centromeric enrichment but could also reveal that the identified uracil sites are derived from cytosine deamination. All the results indicate the potential biological significance of uracil as the epigenetic modification.

6.
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33910903

RESUMO

m6A RNA modification is implicated in multiple cellular responses. However, its function in the innate immune cells is poorly understood. Here, we identified major m6A "writers" as the top candidate genes regulating macrophage activation by LPS in an RNA binding protein focused CRISPR screening. We have confirmed that Mettl3-deficient macrophages exhibited reduced TNF-α production upon LPS stimulation in vitro. Consistently, Mettl3 flox/flox;Lyzm-Cre mice displayed increased susceptibility to bacterial infection and showed faster tumor growth. Mechanistically, the transcripts of the Irakm gene encoding a negative regulator of TLR4 signaling were highly decorated by m6A modification. METTL3 deficiency led to the loss of m6A modification on Irakm mRNA and slowed down its degradation, resulting in a higher level of IRAKM, which ultimately suppressed TLR signaling-mediated macrophage activation. Our findings demonstrate a previously unknown role for METTL3-mediated m6A modification in innate immune responses and implicate the m6A machinery as a potential cancer immunotherapy target.


Assuntos
Ativação de Macrófagos , Metiltransferases , Adenosina/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Lipopolissacarídeos , Ativação de Macrófagos/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos
7.
Nat Struct Mol Biol ; 28(2): 132-142, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398173

RESUMO

Amyotrophic lateral sclerosis (ALS) was initially thought to be associated with oxidative stress when it was first linked to mutant superoxide dismutase 1 (SOD1). The subsequent discovery of ALS-linked genes functioning in RNA processing and proteostasis raised the question of how different biological pathways converge to cause the disease. Both familial and sporadic ALS are characterized by the aggregation of the essential DNA- and RNA-binding protein TDP-43, suggesting a central role in ALS etiology. Here we report that TDP-43 aggregation in neuronal cells of mouse and human origin causes sensitivity to oxidative stress. Aggregated TDP-43 sequesters specific microRNAs (miRNAs) and proteins, leading to increased levels of some proteins while functionally depleting others. Many of those functionally perturbed gene products are nuclear-genome-encoded mitochondrial proteins, and their dysregulation causes a global mitochondrial imbalance that augments oxidative stress. We propose that this stress-aggregation cycle may underlie ALS onset and progression.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Agregação Patológica de Proteínas , Animais , Linhagem Celular , Embrião de Mamíferos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estresse Oxidativo , Agregados Proteicos , Espécies Reativas de Oxigênio/metabolismo
8.
Front Endocrinol (Lausanne) ; 12: 820463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222265

RESUMO

The common carp (Cyprinus carpio) accounts for approximately 10% of the annual freshwater aquaculture production and is an ideal model to study cyprinidae reproduction. Female common carp grow faster than the males; therefore, related research presents an opportunity with high application value. Although we have a detailed understanding of common carp's early gonadal differentiation process, information about genome-wide gene expression, regulation, and underlying molecular mechanisms during this process remain limited. Here, time-course data comprising six key stages during testicular differentiation and maturation were investigated to further understand the molecular mechanisms underlying the testicular development in cyprinid species. After integrating these time-series data sets, common carp genome, including 98,345 novel transcripts and 3,071 novel genes were re-annotated and precisely updated. Gene co-expression network analysis revealed that the ubiquitin-mediated proteolysis pathway was essential for metabolism during testicular differentiation in the endocrine system of C. carpio. Functional enrichment analyses indicated that genes mainly related to amino acid metabolism and steroid hormone synthesis were relatively highly expressed at the testicular undifferentiation stages, whereas genes associated with cell cycle and meiosis were expressed from the beginning of testicular differentiation until maturation. The dynamics of alternative splicing events demonstrated that exon skipping accounted for majority of the alternative splicing events in the testis and the brain during gonad development. Notably, several potential male-specific genes (fanci and sox30) and brain-specific genes (oxt, gad2, and tac1, etc.) were identified. Importantly, we traversed beyond the level of transcription to test for stage- and gonad-specific alternative splicing patterns between the brain and testis. This study is the first to describe a comprehensive landscape of alternative splicing events and gene expression patterns during gonadogenesis in common carp. This work is extremely valuable to elucidate the mechanisms underlying gonadal differentiation in Cyprinidae as well as other fish species.


Assuntos
Carpas , Testículo , Processamento Alternativo , Animais , Encéfalo , Carpas/genética , Feminino , Expressão Gênica , Gônadas/metabolismo , Masculino , Ovário/metabolismo , Testículo/metabolismo
9.
Adv Sci (Weinh) ; 7(19): 2001402, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33042753

RESUMO

N6-methyladenosine (m6A) is rapidly being studied and uncovered to play a significant role in various biological processes as well as in RNA fate and functions, while the effects of defined m6A sites are rarely characterized for the lack of convenient tools. To provide an applicable method to remove m6A modification at specific loci, an m6A editing system called "targeted RNA demethylation by SunTag system (TRADES)" is engineered. In this system, the targeting element dCas13b is fused to ten copies of GCN4 peptides which can recruit multiple scFv-fusion RNA demethylase to demethylate the target m6A site. Owing to this design, TRADES is more flexible to the indistinct m6A sites for its wide editing window. By site-specific demethylation of messenger RNA (mRNA) SON A2699, the lifetime of SON RNA is successfully prolonged in HeLa cells. Meanwhile, TRADES negligibly influences the lifetime of other non-targeted transcripts. TRADES also can regulate the gene expression of target transcript in an m6A-dependent manner. Moreover, the interference occuring for HBV and HIV replications demonstrates that the TRADES system holds potential in viral life cycle regulation and clinical applications.

10.
Adv Sci (Weinh) ; 7(8): 1900997, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328408

RESUMO

RNA sequencing has greatly facilitated gene expression studies but is weak in studying temporal RNA dynamics; this issue can be addressed by analyzing nascent RNAs. A famous method for nascent RNA analysis is metabolic labeling with noncanonic nucleoside followed by affinity purification, however, purification processes can always introduce biases into data analysis. Here, a chemical method for nascent RNA sequencing that avoids affinity purification based on acrylonitrile-mediated uridine-to-cytidine (U-to-C) conversion (AMUC-seq) via 4-thiouridine (s4U) cyanoethylation is presented. This method converts s4U base-pairing with guanine through the nucleophilic addition of s4U to acrylonitrile. The high reaction efficiency permits AMUC-seq directly and efficiently to recover nascent RNA information from total RNAs. AMUC-seq is validated by being used to detect mRNA half-lives and investigating the direct gene targets of a G-quadruplex stabilizer, which can be regarded as potential anticancer drug, in human cells. Thousands of direct gene targets of this drug are verified (these genes are significantly enriched in cancer such as SRC and HRAS). AMUC-seq also confirms G-quadruplex stabilization that impacts RNA polyadenylation. These results show AMUC-seq is qualified for the study of temporal RNA dynamics, and it can be a promising strategy to study the therapeutic mechanism of transcription-modulating drugs.

11.
Nucleic Acids Res ; 48(D1): D1076-D1084, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31665439

RESUMO

Malvaceae is a family of flowering plants containing many economically important plant species including cotton, cacao and durian. Recently, the genomes of several Malvaceae species have been decoded, and many omics data were generated for individual species. However, no integrative database of multiple species, enabling users to jointly compare and analyse relevant data, is available for Malvaceae. Thus, we developed a user-friendly database named MaGenDB (http://magen.whu.edu.cn) as a functional genomics hub for the plant community. We collected the genomes of 13 Malvaceae species, and comprehensively annotated genes from different perspectives including functional RNA/protein element, gene ontology, KEGG orthology, and gene family. We processed 374 sets of diverse omics data with the ENCODE pipelines and integrated them into a customised genome browser, and designed multiple dynamic charts to present gene/RNA/protein-level knowledge such as dynamic expression profiles and functional elements. We also implemented a smart search system for efficiently mining genes. In addition, we constructed a functional comparison system to help comparative analysis between genes on multiple features in one species or across closely related species. This database and associated tools will allow users to quickly retrieve large-scale functional information for biological discovery.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma de Planta , Genômica , Malvaceae/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Malvaceae/classificação , Anotação de Sequência Molecular , Software , Interface Usuário-Computador , Navegador
12.
Cell ; 179(7): 1566-1581.e16, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31835033

RESUMO

Spermiogenesis is a highly orchestrated developmental process during which chromatin condensation decouples transcription from translation. Spermiogenic mRNAs are transcribed earlier and stored in a translationally inert state until needed for translation; however, it remains largely unclear how such repressed mRNAs become activated during spermiogenesis. We previously reported that the MIWI/piRNA machinery is responsible for mRNA elimination during late spermiogenesis in preparation for spermatozoa production. Here we unexpectedly discover that the same machinery is also responsible for activating translation of a subset of spermiogenic mRNAs to coordinate with morphological transformation into spermatozoa. Such action requires specific base-pairing interactions of piRNAs with target mRNAs in their 3' UTRs, which activates translation through coupling with cis-acting AU-rich elements to nucleate the formation of a MIWI/piRNA/eIF3f/HuR super-complex in a developmental stage-specific manner. These findings reveal a critical role of the piRNA system in translation activation, which we show is functionally required for spermatid development.


Assuntos
Proteínas Argonautas/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Interferente Pequeno/metabolismo , Espermatogênese , Regiões 3' não Traduzidas , Animais , Proteínas Argonautas/genética , Pareamento de Bases , Células Cultivadas , Proteína Semelhante a ELAV 1/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
13.
Chem Sci ; 10(2): 447-452, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30746092

RESUMO

5-Hydroxymethylcytosine (5hmC) is known as one of the vital players in nuclear reprogramming and the process of active DNA demethylation. Although the development of whole-genome sequencing methods for modified cytosine bases has burgeoned, the easily operated gene-specific loci detection of 5hmC has rarely been reported. Herein, we present a single-base resolution approach, i.e., chemical-assisted mismatch sequencing (CAM-Seq), which, when combined with traditional oxidation and chemical labeling mediation, can be used for mapping 5hmC at base resolution. We employ chemical oxidation to transform 5hmC to 5-formylcytosine (5fC), followed by chemical labeling to induce C-to-T base changes owing to the fact that the loss of the exocyclic 4-amino group of labeled 5fC leads to C to T conversion and subsequent pairing with adenosine (A) in PCR. The feasibility of CAM-Seq is demonstrated in different synthetic oligonucleotide models as well as in part of the genome of 5hmC-rich mouse embryonic stem cells (mESCs). Moreover, the gene fragment containing 5hmC can be easily biotinylated after oxidation, showing high enrichment efficiency. Our method has the potential capability to map 5hmC in genomic DNA and thus will contribute to promoting the understanding of the epigenetic modification of 5hmC.

14.
iScience ; 9: 423-432, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30466066

RESUMO

Chemical modifications to nucleobases have a great influence on various cellular processes, by making gene regulation more complex, thus indicating their profound impact on aspects of heredity, growth, and disease. Here, we provide the first genome-wide map of 5-formyluracil (5fU) in living tissues and evaluate the potential roles for 5fU in genomics. We show that an azido derivative of (2-benzimidazolyl)acetonitrile has high selectivity for enriching 5fU-containing genomic DNA. The results have demonstrated the feasibility of using this method to determine the genome-wide distribution of 5fU. Intriguingly, most 5fU sites were found in intergenic regions and introns. Also, distribution of 5fU in human thyroid carcinoma tissues is positively correlated with binding sites of POLR2A protein, which indicates that 5fU may distributed around POLR2A-binding sites.

15.
Nat Struct Mol Biol ; 25(11): 1019-1027, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297778

RESUMO

MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells.


Assuntos
MicroRNAs/genética , Fases de Leitura Aberta , Regiões 3' não Traduzidas , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Pareamento de Bases , Regulação da Expressão Gênica , Inativação Gênica , Células HeLa , Humanos , MicroRNAs/metabolismo , Modelos Biológicos , Biossíntese de Proteínas , Motivo de Reconhecimento de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo
16.
J Am Chem Soc ; 140(18): 5886-5889, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29489347

RESUMO

Innovative detection techniques to achieve precise m6A distribution within mammalian transcriptome can advance our understanding of its biological functions. We specifically introduced the atom-specific replacement of oxygen with progressively larger atoms (sulfur and selenium) at 4-position of deoxythymidine triphosphate to weaken its ability to base pair with m6A, while maintaining A-T* base pair virtually the same as the natural one. 4SedTTP turned out to be an outstanding candidate that endowed m6A with a specific signature of RT truncation, thereby making this "RT-silent" modification detectable with the assistance of m6A demethylase FTO through next-generation sequencing. This antibody-independent, 4SedTTP-involved and FTO-assisted strategy is applicable in m6A identification, even for two closely gathered m6A sites, within an unknown region at single-nucleotide resolution.


Assuntos
Anticorpos/química , DNA de Cadeia Simples/química , Metiltransferases/análise , Selênio/química , Nucleotídeos de Timina/química , Anticorpos/metabolismo , DNA de Cadeia Simples/metabolismo , Humanos , Metiltransferases/metabolismo , Selênio/metabolismo , Nucleotídeos de Timina/metabolismo
17.
Chem Sci ; 8(11): 7443-7447, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29163896

RESUMO

5-Formylcytosine (5fC), which plays an important role in epigenetic functions, has received widespread attention in many related fields. Here, we demonstrate a new design for both the fluorogenic switch-on detection and single-base resolution analysis of 5fC through selectively reacting a reagent with 5fC to yield an intramolecular cyclization nucleobase. The generated product, bearing a similar benzothiazole-iminocoumarin scaffold, is highly fluorescent and enables us to qualitatively and quantitatively detect 5fC moieties in γ-irradiated calf thymus DNA. Additionally, losing the exocyclic 4-amino group in 5fC causes the incorporation of dATP through base pairing with the generated nucleobase during polymerase extension, which helped us to analyze the 5fC sites in both single- and double-stranded oligonucleotides. Our Sanger and Illumina sequencing results show great potential in single-base resolution analysis of 5fC. It is hopeful that a similar design may be used for more detection targets.

18.
Int J Hyperthermia ; 33(3): 343-353, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27881031

RESUMO

PURPOSE: To investigate whether cavitation enhances the degree of coagulation during pulsed high-intensity focussed ultrasound (HIFU) in an isolated liver perfusion system. METHODS: Isolated liver was treated by pulsed HIFU or continuous-wave HIFU with different portal vein flow rates. The cavitation emission during exposure was recorded, and real-time ultrasound images were used to observe changes in the grey scale. The coagulation size was measured and calculated. RESULTS: HIFU treatment led to complete coagulation necrosis and total cell destruction in the target regions. Compared to exposure at a duty cycle (DC) of 100%, the mean volumes of lesions induced by 6 s exposure at DCs of 50% and 10% were significantly larger (P < .01) but were smaller at a DC of 5%. The necrosis volume was negatively related to the perfusion rate in the pulsed HIFU at a DC of 50% for exposure durations of 4 and 6 s, while the perfusion flow rate did not affect the necrosis volume for exposure durations of 1, 2 and 3 s. For increased perfusion flow rates, there was no significant decrease in the cavitation activity for the pulsed-HIFU (P > .05). For continuous-wave HIFU exposure, there was a significant decrease in the necrosis volume and cavitation activity for exposure times of 1, 2, 3, 4, and 6 s with increasing portal perfusion rates. CONCLUSION: Perfusion flow rates negatively influence cavitation activity and coagulation volume. Ablation is significantly enhanced during pulsed HIFU exposure compared with continuous-wave HIFU.

19.
Biomed Res Int ; 2016: 7936902, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27419138

RESUMO

Purpose. To investigate whether acoustic cavitation could increase the evaporation of a phase-shift inorganic perfluorohexane (PFH) nanoemulsion and enhance high intensity focused ultrasound (HIFU) ablation. Materials and Methods. PFH was encapsulated by mesoporous silica nanocapsule (MSNC) to form a nanometer-sized droplet (MSNC-PFH). It was added to a tissue-mimicking phantom, whereas phosphate buffered saline (PBS) was added as a control (PBS-control). HIFU (P ac = 150 W, t = 5/10 s) exposures were performed in both phantoms with various duty cycles (DC). US images, temperature, and cavitation emissions were recorded during HIFU exposure. HIFU-induced lesions were measured and calculated. Results. Compared to PBS-control, MSNC-PFH nanoemulsion could significantly increase the volume of HIFU-induced lesion (P < 0.01). Peak temperatures were 78.16 ± 5.64°C at a DC of 100%, 70.17 ± 6.43°C at 10%, 53.17 ± 4.54°C at 5%, and 42.00 ± 5.55°C at 2%, respectively. Inertial cavitation was much stronger in the pulsed-HIFU than that in the continuous-wave HIFU exposure. Compared to 100%-DC exposure, the mean volume of lesion induced by 5 s exposure at 10%-DC was significantly larger, but smaller at 2%-DC. Conclusions. MSNC-PFH nanoemulsion can significantly enhance HIFU ablation. Appropriate pulsed-HIFU exposure could significantly increase the volume of lesion and reduce total US energy required for HIFU ablation.


Assuntos
Fluorocarbonos/química , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Nanocápsulas/química , Nanocápsulas/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Fluorocarbonos/efeitos da radiação , Fluorocarbonos/uso terapêutico , Gases/síntese química , Gases/efeitos da radiação , Ondas de Choque de Alta Energia , Técnicas In Vitro , Compostos Inorgânicos/química , Compostos Inorgânicos/efeitos da radiação , Compostos Inorgânicos/uso terapêutico , Teste de Materiais , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA