RESUMO
Objective. Tactile P300 brain-computer interfaces (BCIs) can be manipulated by users who only need to focus their attention on a single-target stimulus within a stream of tactile stimuli. To date, a multitude of tactile P300 BCIs have been proposed. In this study, our main purpose is to explore and investigate the effects of visual attention on a tactile P300 BCI. Approach. We designed a conventional tactile P300 BCI where vibration stimuli were provided by five stimulators and two of them were fixed on target locations on the participant's left and right wrists. Two conditions (one condition with visual attention and the other condition without visual attention) were tested by eleven healthy participants. Main Results. Our results showed that, when participants visually attended to the location of target stimulus, significantly higher classification accuracies and information transfer rates were obtained (both for p < 0.05). Furthermore, participants reported that visually attending to the stimulus made it easier to identify the target stimulus in random sequences of vibration stimuli. Significance. These findings suggest that visual attention has positive effects on both tactile P300 BCI performance and user-evaluation.
Assuntos
Atenção/fisiologia , Interfaces Cérebro-Computador , Potenciais Evocados P300/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estimulação Luminosa , Estimulação Física , Tato/fisiologia , Vibração , Percepção Visual/fisiologia , Adulto JovemRESUMO
OBJECTIVE: Tactile brain-computer interface (BCI) systems can provide new communication and control options for patients with impairments of eye movements or vision. One of the most common modalities used in these BCIs is the P300 potential. Until now, tactile P300 BCIs have been successfully constructed by situating tactile stimuli at various parts of the human body. This article proposed a novel tactile P300 BCI paradigm for further expanding the tactile stimulation methods. METHODS: In our proposed paradigm, the spatial target vibrotactile stimuli were delivered to subject's left and right cheeks. To validate the feasibility of our proposed paradigm, a traditional tactile P300 BCI paradigm employing spatial target vibrotactile stimuli to subject's left and right wrists was used for comparison. RESULTS: The experimental results of nine healthy subjects demonstrated that the proposed paradigm could obtain significantly higher classification accuracy and information transfer rate than the traditional paradigm (both for p < 0.05). Furthermore, the subjective feedback showed that our proposed paradigm was more favored by the subjects compared to the traditional paradigm, and most subjects reported that the new paradigm helped them easily distinguish between targets and non-targets. CONCLUSION: The proposed tactile P300 BCI paradigm is feasible, and can bring about superior performance and use-evaluation. SIGNIFICANCE: The new paradigm might lead to many promising applications of such BCIs.
Assuntos
Interfaces Cérebro-Computador , Bochecha , Eletroencefalografia , Potenciais Evocados P300 , Humanos , TatoRESUMO
Glutamate-1-semiadhyde aminotransferase (GSAT) is an enzyme in the upstream biosynthetic pathway of uroporphyrinogen III that is the substrate of uroporphyrinogen III methyltransferase (UPMT), a novel red fluorescent protein. In order to detect the effect of overexpression of GSAT with UPMT on the fluorescent intensity in Escherichia coli, we amplified maize upmt gene by PCR and inserted into the first cistron of pET Duet-1 plasmid to create the vector pETU. The expressed UPMT was fused histidine tag at N terminus. We also amplified E. coli hemL gene encoding GSAT by PCR reaction, eliminated Nco I site within the hemL gene by site-directed mutagenesis and subcloned into pET-51b plasmid. The resultant hemL gene was inserted the second cistron of pETU plasmid to produce the vector pETeGU. The expressed GSAT has the extra Strep-TagII at N terminus. Compared to overexpression upmt gene alone, coexpression both genes did not resulted in the remarkable change in either the amount of the UPMT, as estimated by western blot analysis, or the constitution of red fluorescent materials, as shown by UV/visible light scanning analysis, but increased cellular level of the fluorescent material trimethylpyrrocorphin with the specific absorption at 354 nm. The red fluorescence emitted by the colonies cooverexpressing both enzymes completely disappeared after treated by 2 mmol/L gabaculine, the GSAT inhibitor, suggested that the recombinant GSAT may increase the cellular level of uroporphyrinogen III, and thus enhanced the red fluorescence of the E. coli cells conferred by the recombinant UPMT.